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1 Introduction1

This course is about dynamic systems, i.e., systems that evolve over time.
The analysis of the dynamic evolvement of economic systems is of core im-
portance in many areas of economics. Growth, business cycles, asset pricing,
and dynamic game theory are just a few examples.

1.1 Solving a simple dynamic system

Very often, our economic models provide a di¤erence or di¤erential equation
for the endogenous variables. Take a very simple example; an arbitrage asset
pricing model. Suppose there is a safe asset, a bond, that provides a return r
every period. Suppose a share, giving rights to dividend �ow of d per period;
is introduced. Now, arbitrage theory says that the share should also yield
a return r in equilibrium. De�ning the price on the share as p, arbitrage
theory thus implies,

pt+1 + d

pt
= 1 + r: (1)

This is a simple di¤erence equation,

pt+1 = (1 + r) pt � d: (2)

Note that we pt is an endogeneous variable in this system while r and d
are exogeneous. This would be the case also if d and r varies over time, cases
we will study below.
One straightforward way of solving it is to substitute forward or backward,

e.g., noting that

pt = (1 + r) pt�1 � d (3)

= (1 + r) ((1 + r) pt�2 � d)� d (4)

= (1 + r)2 pt�2 � d (1 + (1 + r)) (5)

and so on. A more general approach is to �rst characterize all possible paths
consistent with the law-of-motion. Here, this is quite simple. You will learn
that set of possible paths is

pt = c (1 + r)
t +

d

r
(6)

1I am grateful for comments and corrections provided by Dirk Niepelt.
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for any constant c: As we see, there is an in�nite number of solutions, i.e.,
we need more information. If, for example, we know that the value of p0, we
can solve for the constant

c = p0 �
d

r
(7)

! pt =

�
p0 �

d

r

�
(1 + r)t +

d

r
: (8)

In �nance, the solution p = d
r
is called the fundamental solution, and we

see that if r > 0; the solution explodes as t goes to in�nity if p0 6= d
r
: This

gives us another way of solving the di¤erence equation. Suppose, we have
reason to believe that the solution should remain bounded. Then, if r > 0,
the only solution left is when c = 0: Note that (1 + r) is called the root of
the system. Note, the importance of whether the root is bigger or smaller
than unity (in absolute values).
We will also work in continuous time. Then, I usually use put the time

variable in parenthesis and use the dot symbol to indicate time derivatives.
In continuous time, non-existence of arbitrage means that capital gains, i.e.,
the change in the price per unit of time plus dividends per unit of time should
equal the opportunity cost, i.e., interest rate on the price of the assets. Thus,
non-existence of arbitrage implies

_p (t) + d = rp (t) : (9)

This is a simple linear �rst-order di¤erential equation. The set if solution is:

p (t) = cert +
d

r
: (10)

Also here, we have a term that is explosive if r > 0:
Later in the course, we will learn how to solve more complicated dynamic

systems, involving, e.g., several endogenous variables and varying parame-
ters.

1.2 Two approaches to Dynamic Optimization

The second part of the course, is to solve maximization problems in dynamic
systems. Suppose there is a potentially in�nite set of paths x (t)T0 ; each
denoting a particular continuous function x (t) for t 2 [0; T ] : Suppose also
that we can evaluate them, i.e., they give di¤erent payo¤s. Then, we will
learn how to derive di¤erence or di¤erential equations, that are necessarily
satis�ed for optimal paths. If we can solve these equations, we can �nd the
optimal path. We will use two approaches in this course.
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1.2.1 Dynamic Programming (Bellman).

Suppose we want to �nd an optimal investment plan in discrete time and let
xt denote the stock of capital at time t: Also, let ut denote investments and
assume

xt+1 = g(xt; ut); (11)

which we call the law-of-motion for xt:
Each period, the payo¤ is given by F (t; xt; ut) and the problem is to solve

max
xT+10 ;uT0

TX
t=0

F (t; xt; ut) ; (12)

s.t. xt+1 = g(xt; ut)8t; (13)

x0 = x: (14)

Note that this is a dynamic problem; The choice of investment at time t;
ut may a¤ect payo¤s in many future period. First, the payo¤at t; F (t; xt; ut)
is a¤ected directly and also the next periods payo¤ since

F (t+ 1; xt+1; ut+1) = F (t+ 1; g(xt; ut); ut+1) :

Furthermore, also payo¤s further away can be a¤ected since, for example,
xt+2 = g(xt+1; ut+1) = g(g(xt; ut); ut+1), a¤ecting the payo¤ in period t + 2:
The choice of ut must thus take into account all future payo¤ relevant e¤ects.
Sometimes the dynamic problem degenerates in the sense that this dy-

namic link breaks. To illustrate this, let us simplify and take the example
where F (t; xt; ut) =

�
1
1+r

�t
(ft (xt)� ut) and g (xt; ut) = (1� �)xt � ut: We

can interpret � as the rate of capital depreciation. If � = 1, we have xt+1 = ut
and by substituting from the law-of-motion, we can write the problem as

max
xT1

TX
t=0

�
1

1 + r

�t
(ft (xt)� xt+1) ; (15)

x0 = x: (16)

The �rst-order condition for choosing xt for any t > 0 is f 0t (xs) = 1+r, so
to know how much to invest in period t; we only need to know the marginal
productivity of capital next period, i.e., we maximize period-by-period. With
� < 1; we cannot do this. Then dynamic programing is a handy way to attack
the problem. We will use the Bellman�s principle of optimality, saying that
there exists a sequence of functions Vt (xt) such that

Vt (xt) = max
ut
F (t; xt; ut) + Vt+1 (g(xt; ut)) (17)

3



and where

Vt (xt) � max
xT+1t ;uTt

TX
s=t

F (s; xs; us) (18)

s.t. xt+1 = g(xt; ut) (19)

xt given. (20)

Vt (xt) is called the value function and xt a state variable. We �nd that
through the Bellman principle, we have split up the problem into a sequence
of one period problems. We can then solve the problem more easily since the
�rst-order condition for maximizing the RHS of (17)

Fu (t; xt; ut) + V
0
t+1 (g(xt; ut)) gu(xt; ut) = 0: (21)

implicitly yields a system of di¤erence equations in xt and ut that we may
be able to solve.

1.2.2 Optimal control (Pontryagin)

The other way of solving dynamic optimization problems that we will use
is called Optimal Control. We will use it for continuous time problems.
Suppose we want to solve

max
x(t)T0 ;u(t)

T
0

Z T

0

F (t; x (t) ; u (t)) dt (22)

s:t: _x (t) = g (x (t) ; u (t)) (23)

x (0) = x0 (24)

x (T ) = xT : (25)

Then, Pontryagin�s maximum principle says that for each point in time,
the optimal control, call it u� (t) ; satis�es

u� (t) = argmax
u(t)

F (t; x (t) ; u (t)) + � (t) g (x (t) ; u (t)) ; (26)

where � (t) can be interpreted as the shadow value of the state variable
(capital). The sum F (t; x (t) ; u (t))+� (t) g (x (t) ; u (t)), is called the Hamil-
tonian. Again, we have turned the dynamic problem into a sequence of static
problems. The �rst order condition for (26) will implicitly de�ne a system
of di¤erential equations. Note the similarity between (26) and (17).

4



2 Some basics

2.1 Taylor series

We will often need to approximate a continuous and di¤erentiable function
around some point. Speci�cally, suppose we know f (x0) and some of its
derivatives and want to approximate the value in some other point x 6= x0.
An e¢ cient way of doing such an approximation is to use Taylors formula.
This can be seen as an attempt to �t a polynomial (we will talk about such
below) to a curve.

Result 1 The Taylor approximation is

f (x) � f (x0) +
1

1!
f 0 (x0) (x� x0) +

1

2!
f 00 (x0) (x� x0)2 (27)

+
1

3!
f 000 (x0) (x� x0)3 + :::

Usually we will just use the �rst order approximation f (x) � f (x0) +
f 0 (x0) (x� x0) but sometimes a higher order approximation can be useful.
It can furthermore be shown, that the approximation error of an n�th order
Taylor approximation is given by

1

(n+ 1)!

d(n+1)f (c)

dx(n+1)
(x� x0)n+1 (28)

where c 2 [x0; x]: As we see, when x� x0 is small, two forces imply that the
approximation error tends to be small when n is large. In the denominator,
(n+ 1)! is large and (x� x0)n+1 is small. Although higher-order approxima-
tions often are better, we cannot say that for any (x� x0) a higher order
approximation is better.

2.2 Integration

If b > a, the expression
bZ
a

f (t) dt; (1)

can be interpreted as the area under the graph y = f(x) for x 2 [a; b]. How
should one compute such an area? The most natural way would be to divide
the interval [a; b] into (many) sub-intervals by choosing numbers a = t1 <
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t2 < t3:::tn = b. Suppose we choose uniform intervals, ti+1 � ti � �t = b�a
n�1 .

Then we can approximate the area by

bZ
a

f (t) dt �
n�1X
i=1

f (ti)�t; (2)

i.e., by summing rectangles of base �t and height f (ti) :

f t( )

ta b

F b a( , )

f t( )

tt2 t3t1 t4 t5 t6

If the function f (t) is bounded and di¤erentiable and we let the number
of sub-intervals (n) increase and therefore size of each one decrease, the
approximation (2) becomes perfect as n!1. To see this, note that we can
approximate the error in the approximation by the triangle f(ti+1)�f(ti)

2
�t.

Since f (ti+1) � f (ti)+f 0 (ti)�t, by a �rst order Taylor approximation, each
triangle can be approximated by

f 0 (ti)�t

2
�t =

f 0 (ti)

2
�t2: (3)

Furthermore, the sum of absolute errors,�����
n�1X
i=1

f 0 (ti)

2
�t2

����� � max
i
jf 0 (ti)j

1

2

n�1X
i=1

�t2 = (4)

max
i
jf 0 (ti)j

1

2
(n� 1)

�
b� a
n� 1

�2
= max

i
jf 0 (ti)j

1

2

(b� a)2

n� 1 : (5)

Clearly, this goes to zero as n goes to in�nity. If the function f (t) has
discontinuities or is non-di¤erentiable somewhere, we can do the summation
for each interval where f (t) is continuous.
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We conclude that we should think of the integral as a sum of rectangles,
each with height given by the function we are integrating and base dt:
If we can handle integration over compact intervals, we can also de�ne

integrals over unbounded intervals by taking the limit value as integration
limits (a, and/or b) approach in�nity. Of course, this limit does not always
exist. If it does, we use the notation

lim
a!�1

bZ
a

f (t) dt �
bZ

�1

f (t) dt (6)

lim
b!1

bZ
a

f (t) dt �
1Z
a

f (t) dt (7)

2.2.1 Fundamental theorem of calculus

An integral is a generalization of a sum, and a derivative is a generalization
of a di¤erence. The following theorem links these concepts. The �rst part of
the Fundamental Theorem says that if

F (b) =

bZ
a

f (t) dt (8)

then

F 0 (b) =
@

@b

bZ
a

f (t) dt = f(b): (9)

(Convince yourself that this is reasonable by making a drawing.) A func-
tion F (t) that has the property that F 0(t) � f(t) is called a primitive for
f . Clearly, if F (t) is a primitive for f(t), then also F (t) plus any constant,
is a primitive. Thus, the �rst part of the fundamental theorem provides a
necessary, but not su¢ cient condition for �nding the area.
Now let us turn to he second part of the theorem, which provides a way

of calculating the exact value of an integral like in (1).

Result 2 Let F be any primitive of f , then

bZ
a

f (t) dt = F (b)� F (a) � [F (t)]ba : (10)
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Sometimes it is easy to �nd the primitive, like in the cases f(t) = ta; 1=(at+
b) or eat, in which case F (t) is ta+1=(a+1); ln(at+ b)=a; or eat=a respectively.
In other cases like �0:5e�x

2
, the primitive cannot be expressed by using stan-

dard algebraic functions. This does not mean that the primitive does not
exist. In the case �0:5e�x

2
, a primitive is the cumulative normal distribution,

which certainly exists.
Since the integral is a (kind of) sum, it is straightforward to understand

Liebniz�rule.

Result 3 If f is di¤erentiable, then

@

@x

bZ
a

f (x; t) dt =

bZ
a

@

@x
f (x; t) dt; (11)

@

@a

bZ
a

f (x; t) dt = �f (x; a) ; (12)

@

@b

bZ
a

f (x; t) dt = f (x; b) : (13)

f t x( , )

t

a b

f t x
f t x

x

dx( , )
( , )

+
¶

¶

a da+ b db+

2.2.2 Change of variables

Suppose that y = g(x), then the rules of di¤erentiation gives dy = g0(x)dx.
Now let us calculate the area under some function f(y) but integrating over
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x: In a sense, this is like changing the scale of the horisontal axis. To do this,
we simply substitute y = g(x); dy = g0(x)dx: To get the integration limits,
we note that if x = a then y = g (a) :

Result 4 If, y = g(x) then

g(b)Z
g(a)

f (y) dy =

bZ
a

f (g (x)) g0(x)dx: (14)

Sometimes a variable substitution makes integration simpler. Take the
following example;

2Z
1

�
x2 + 1

�10
2xdx: (15)

Now de�ne y � x2 + 1 � g (x) implying

dy = 2xdx; g (1) = 2; g (2) = 5 (16)
2Z
1

�
x2 + 1

�10
2xdx =

5Z
2

y10dy (17)

2.2.3 Integration by parts

Another important result, which we will use a lot, is the following rule for
integration by parts. Assume we want to integrate a product of two func-
tions of x; i.e., u(x)v(x). Then, let U(x) be a primitive of u. The rule for
di¤erentiation of products says

d (U (x) v (x))

dx
= u (x) v (x) + U (x) v0 (x) (18)

! u (x) v (x) =
d (U (x) v (x))

dx
� U (x) v0 (x) : (19)

Then, we can integrate over x on both sides, giving

Result 5Z b

a

u (x) v (x) dx =

Z b

a

d (U (x) v (x))

dx
dx�

Z b

a

U (x) v0 (x) dx (20)

= [U (x) v (x)]ba �
Z b

a

U (x) v0 (x) dx (21)
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2.2.4 Double integration

As we know, the integral is an area under a curve f(t) over an interval [a; b]
in the t dimension. Similarly, we can compute the volume under a plane with
a height f(t; s) over an area in the t; s dimension. For example, let f(t; s) be
t � s and integrate over a rectangle with sides [at; bt] and [as; bs]:

t

s

The function, z = ts

The volume under the plane f (t; s) is then given by

Z bs

as

Z bt

at

f (t; s) dtds =

Z bs

as

�Z bt

at

tsdt

�
ds = (22)Z bs

as

 �
t2

2
s

�bt
at

!
ds =

Z bs

as

s

�
b2t � a2t
2

�
ds = (23)�

b2t � a2t
2

��
s2

2

�bs
as

=

�
b2t � a2t
2

��
b2s � a2s
2

�
(24)

Note, that we are �rst calculating the area under f(t; s) over the interval
[at; bt]for each s. This area is a function of s which we then integrate over
the interval [as; bs] in the s-dimension. If we integrate over other areas than
rectangles, the limits of integration are not independent. For example, we
may integrate over a triangle where bt = s. Simplify and set at = as = 0:
Then, we have

Z bs

0

Z s

0

f (t; s) dtds =

Z bs

0

�Z s

0

tsdt

�
ds =

Z bs

0

��
t2

2
s

�s
0

�
ds = (25)Z bs

0

s
s2

2
ds =

�
s4

8

�bs
0

=
b4s
8
: (26)
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2.3 Complex numbers and trigonometric functions

The formula for the solution to a quadratic equation ax2 + bx+ c = 0, is

x = � b

2a
�
p
(b2 � 4ac)
2a

: (27)

If b2 � 4ac < 0 . The solution is not in the set of real numbers. The
introduction of complex numbers intended to extend the space of solutions
to accommodate such cases and it turns out that for all numbers in the
extended space, we can always �nd solutions to such equations. We can
think of complex numbers as two-dimension objects z = (x; y). The �rst
number, x, provides the value in the standard real dimension, while the
second provides the value in the other dimension, called imaginary. Thus,
real numbers are a special sub-set of complex number such that y = 0:

Realx

Imaginary
y

i = (0,1)

1 = (1,0)

z = (x,y)

The rules for addition and multiplication with complex numbers are the
following

z1 + z2 = (x1 + x2; y1 + y2) (28)

z1z2 = (x1x2 � y1y2; x1y2 + x2y1) (29)
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Using these rules, we can compute the square of a complex number only
consisting of a unitary imaginary part, i.e., z = i = (0; 1) :

(0; 1)2 = (0� 1; 0 + 0) = (�1; 0) = �1 (30)

We thus established the important result

Result 6 x = i is a solution to the equation x2 = �1.

Using the rules above, it is also straightforward to show that an alternative
we of writing z is given by the following

z � (x; y) = (x; 0) + (0; y) = x (1; 0) + y (0; 1) = x+ yi: (31)

We should also note that

(x; y) (x;�y) =
�
x2 + y2;�xy + xy

�
=
�
x2 + y2; 0

�
� j(x; y)j2 (32)

The numbers (x; y) and (x;�y) are called complex conjugates and the
value jx; yj is called the modulus of (x; y).

2.3.1 Polar representation

Recall that in the right-angled triangle in the �gure, we have

cos (�) =
x

r
(33)

sin (�) =
y

r
(34)

r =
p
x2 + y2: (35)

r

θ

z=(x,y)

x

y
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Using this, we can represent the complex number z either by its coordi-
nates, (x; y) or alternatively as r(cos(�) + i sin(�)). The latter form is called
the polar representation and r is the modulus and � is the argument of z.
Usually we measure � in radians.
We will use the following result below.

Result 7 Let z be the complex number (x; y) , then z satis�es

z = rei� (36)

where r is the modulus of z and � is the argument. In particular, for
r = 1 we get,

ei� = cos (�) + i sin (�) (37)

e�i� = cos (��) + i sin (��) = cos (�)� i sin (�) (38)

ei� = cos (�) + i sin (�) = �1 (39)

Optional proof:
The Taylor formula around zero for any function f (x) is

f (x) = f (0) +
f 0 (0)

1!
x+

f 00 (0)

2!
x2 +

f 000 (0)

3!
x3::: (40)

Using this for f(x) = ex; cos(x) and sin(x), and the rules

@

@x
cos (x) = � sin (x) (41)

@

@x
sin (x) = cos (x) (42)

we have respectively

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
::: (43)

cos (x) = cos (0)� sin(0)x� cos (0)
2!

x2 +
sin (0)

3!
x3 (44)

+
cos (0)

4!
x4 � sin (0)

5!
x5 � cos (0)

6!
x6::: (45)

= 1� x
2

2
+
x4

4!
� x

6

6!
::: (46)

sin (x) = sin (0) + cos(0)x� sin (0)
2!

x2 � cos (0)
3!

x3 (47)

+
sin (0)

4!
x4 +

cos (0)

5!
x5 � sin (0)

6!
x6 � cos (0)

7!
x7::: (48)

= x� 1

3!
x3 +

1

5!
x5 � 1

7!
x7 (49)
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Thus, using the Taylor formula around zero to evaluate f(i�) = ei�, we
have

ei� = 1 + i� +
(i�)2

2!
+
(i�)3

3!
+
(i�)4

4!
+
(i�)5

5!
+
(i�)6

6!
::: (50)

= 1 + i� � 1
2
�2 � 1

3!
i�3 +

1

4!
�4 +

1

5!
i�5 � 1

6!
�6::: (51)

= 1� 1
2
�2 +

1

4!
�4 � 1

6!
�6::: (52)

+i� � 1

3!
i�3 +

1

5!
i�5::: (53)

= cos (�) + i sin (�) (54)

2.3.2 Polynomials

A polynomial P (z) of order n is de�ned as weighted sum of zs for s 2
f0; :::; ng, i.e.,

P (z) � anzn + an�1zn�1+; :::;+a1z1 + a0; (55)

for some sequence of constants fasgn0 : The following will be important for
our analysis of di¤erence and di¤erential equations.

Result 8 A polynomial P (z) of order n has exactly n, not necessarily dis-
tinct, roots. I.e., it can be expressed as

P (z) = an (z � r1) (z � r2) ::: (z � rn) (56)

From (56), we see that each root ri is a solution to the equation P (z) = 0.
Note that the roots may be repeated, i.e.,ri = rj and that, of course, some
root may be complex. It turns out, also, that complex roots always come in
pairs, the complex conjugates.
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3 Di¤erential equations

3.1 Linear Di¤erential Equations of First Order

A �rst order di¤erential equation is an equation of the form

dx(t)

dt
� _x (t) = f(x; t): (1)

As noted above, there will in general be a whole class of functions x(t; c)
(parameterized by c) that satis�es the di¤erential equation (1). We need
more information, like an initial condition for x (t0) ; to pin down the solution
exactly.

Result 9 Given that f is continuous and has continuous �rst derivatives,
there is going to be a one function x(t) that satis�es (1) and an initial con-
dition.

3.1.1 The simplest case

If f is independent of x, the solution is trivial. Then since

_x (t) = f (t) ; (2)

the class of functions satisfying this is a primitive function of f plus any
constant, i.e., for any t0 and ~c;

x (t) =

Z t

t0

f (s) ds+ ~c = F (t)� F (t0) + ~c; (3)

where F (t) is any primitive of f , satis�es (2). Note that F (t0) is a constant.
We can thus merge the two constants, de�ning c � ~c� F (0) and write

x (t) = F (t) + c; (4)

which shows that there is only one degree of freedom in the constants ĉ and
t0. Choosing another t0 simply means that the constant ĉ has to be chosen
in another way. Certainly, for all c, (4) satis�es (1). For example, if

f (t) = eat; (5)

F (t) =
eat

a
(6)
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is a primitive for f (t) : The arbitrary constant is pinned down with some
other piece of information. So, if we want to �nd x(t) and we know the value
of x(0), we get

x (t) = F (t) + c (7)

x (0) = F (0) + c (8)

! c = x (0)� F (0) (9)

x (t) = F (t) + x (0)� F (0) : (10)

3.1.2 A note on notation

Above, we have used the proper notation of an integral, where both the lower
and upper limits and the dummy variable to integrate over have separate
names and are all written out. Often, a more sloppy notation is used, for an
arbitrary t0 we write Z t

t0

f (s) ds =

Z
f (t) dt = F (t) (11)

where it is understood that
R
f (t) dt is a (any) primitive of f (t) : This no-

tation, called an inde�nite integral, saves on variables, but can be confusing
since t is used as both the variable to integrate over and as upper integration
limit. Nevertheless, I will follow ordinary practice and use it below. Using
this notation, we rewrite (3)

x (t) =

Z
f (t) dt+ c: (12)

3.1.3 A little bit more complicated

Very often, a solution to a more complicated di¤erential equation is derived
by transforming the original equation into something that has the form of
(2). Linear �rst order di¤erential with constant coe¢ cients equations can be
solved directly using such a transformation. Consider

_y (t) + ry (t) = q: (13)

In this case, we multiply both sides by ert (often called the integrating
factor). After doing that, note that the LHS becomes

ert ( _y (t) + ry (t)) =
d (erty (t))

dt
: (14)

16



Thus, thinking of erty (t) as simply a function of t, as x(t) in (2), we get
a LHS that is the time derivative of a known function of t and the RHS is
also a function only of t. Let�s set t0 = 0; then the solution is found as in
(3).

d (erty (t))

dt
= ertq (15)

erty (t) =

Z t

0

ersqds+ c =

�
ersq

r

�t
0

+ c (16)

=
q

r

�
ert � 1

�
+ c (17)

! y (t) = e�rt
�q
r

�
ert � 1

�
+ c
�
=
q

r
+
�
c� q

r

�
e�rt: (18)

If we know y(t) at some point in time, e.g. at t = 0:

y (0) =
q

r
+
�
c� q

r

�
= c (19)

! y (t) =
q

r
+
�
y (0)� q

r

�
e�rt (20)

Let�s compare this to the case when we use the inde�nite integral. Then,
we have

d (erty (t))

dt
= ertq (21)

erty (t) =

Z
ertqdt+ c =

ertq

r
+ c (22)

=
q

r
ert + c (23)

! y (t) =
q

r
+ ce�rt: (24)

y (0) =
q

r
+ c! c =

�
y (0)� q

r

�
(25)

! y (t) =
q

r
+
�
y (0)� q

r

�
e�rt (26)

As you see, although the integration constants are di¤erent, the result
is the same. The di¤ererence is that the constant submerges the primitive
evaluated at the lower integration limit.

3.1.4 Variable exogenous parts

Let us generalize (13) by assuming that q = q (t), a function of time. Consider
an arbitrage condition where y(t) is an asset price, with dividends q (t) per
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unit of time: Not to loose track of things, we use the notation with integration
limits, rather than inde�nite integrals.
Holding the asset should yield no excess return, i.e.,

_y (t) + q (t) = ry (t) (27)

_y (t)� ry (t) = �q (t) (28)

) e�rty (t) = �
Z t

t0

e�rsq (s) ds+ c (29)

Often, economic theory let us use a so called �No-Ponzi�condition (typ-
ically requiring r > 0) . Here this gives an end condition, since it requires
that

lim
t!1

e�rty (t) = 0: (30)

Using this, we get

c = lim
t!1

Z t

t0

e�rsq (s) ds �
Z 1

t0

e�rsq (s) ds; (31)

giving

e�rty (t) =

Z 1

t0

e�rsq (s) d�
Z t

t0

e�rsq (s) ds (32)

=

Z 1

t

e�rsq (s) ds (33)

y (t) = ert
Z 1

t

e�rsq (s) ds =

Z 1

t

e�r(s�t)q (s) ds; (34)

i.e., that no arbitrage and �No-Ponzi�implies that the price must equal the
discounted sum of future dividends.

3.1.5 Variable coe¢ cients

If also the coe¢ cient on the endogenous variable (y (t)) is varying over time,
we need a more general integrating factor to make the LHS od the equation
being the time di¤erential of a known function. For example, consider the
no-arbitrage equation for an asset price y (t) with dividends q (t) and interest
rate r (t)

_y (t) + q (t) = r (t) y (t)) _y (t)� r (t) y (t) = �q (t) : (35)

Here the integrating factor is

e
�
R t
t0
r(s)ds

: (36)
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with
de
�
R t
t0
r(s)ds

dt
= �r (t) e�

R t
t0
r(s)ds

; (37)

alternatively expressed as

de
�
R
r(t)dt

dt
= �r (t) e�

R
r(t)dt:

Approximating the integral as a sum of rectangles with base �t as in
section 2.2, (which is exact if r(t) were piecewise constant), and de�ning
r (t0 + s�t) � rts , for the integers s 2 f0; Sg ; S = (t�t0)=�t, the integrating
factor, can be written

e
�
R t
t0
r(s)ds � e�r0�te�r1�t:::e�rS�t �

�
1

1 + r1�t

��
1

1 + r1�t

�
:::

�
1

1 + rS�t

�
;

(38)
i.e., it is product of all short run discount factors between t0 and t: To save
on notation, this product is denoted as

e
�
R t
t0
r(s)ds � R (t; t0) ; (39)

or if the starting point is suppressed as R (t) : This has a straightforward
interpretation. Suppose the variable discount rate is given by r (s), then, the
the discounted value of a payment y (t) at t seen from t0 isR (t; t0) y (t) :Using,
the integrating factor, we get

R (t) ( _y (t)� r (t) y (t)) = �R (t) q (t) (40)
dR (t) y (t)

dt
= �R (t) q (t) ;! (41)

R (t) y (t) = �
Z t

t0

R (s) q (s) ds+ c (42)

Suppose again, lim t!1R (t) y (t) = 0; implying c =
R1
t0
R (s) q (s) ds.

Then, noting that R (t)�1R (s) = e
R t
t0
r(v)dv�

R s
t0
r(v)dv

= e�
R s
t r(v)dv = R (s; t)

we have

R (t) y (t) = �
Z t

t0

R (s) q (s) ds+

Z 1

t0

R (s) q (s) ds =

Z 1

t

R (s) q (s) ds(43)

y (t) =

Z 1

t

R (t)�1R (s) q (s) ds =

Z 1

t

e�
R s
t r(v)dvq (s) ds; (44)

i.e., that the asset price equals the discounted value of future dividends.

19



As another example, consider money on a bank account with variable
interest rate and deposits q (t) ;then

_y (t) = r (t) y (t) + q (t) (45)

_y (t)� r (t) y (t) = q (t) (46)
dR (t; t0) y (t)

dt
= R (t; t0) q (t) (47)

! R (t; t0) y (t) =

Z t

t0

R (s; t0) q (s) ds+ c (48)

y (t) =

Z t

t0

R (t; t0)
�1R (s; t0) q (s) +R (t; t0)

�1 c (49)

Since s � t here, the term R (t; t0)
�1R (s; t0) is more conveniently2 writ-

ten e
R t
s r(v)dv: Using also an initial condition, y (t0) ;we have

y (t) =

Z t

t0

e
R t
s r(v)dvq (s) ds+ e

R t
t0
r(v)dv

y (t0) ; (50)

where the �rst term is the period t value of all deposits up until t and the
second term is the period t value of the initial amount on the bank.

3.1.6 Separating variables

Sometimes, we can write a di¤erential equation such that the LHS only
contains functions of x and _x and the RHS only a function of t. For example

_x (t) =
h (t)

g (x)
(51)

_x (t) g (x) = h (t) : (52)

In this case, we can use the following trick. Let G (x) be any primitive of
g (x), i.e., dG(x)

dx
= g (x) : Then,

_x (t) g (x (t)) =
dG(x (t))

dt
= h (t) (53)

G(x) =

Z
h (s) ds+ c (54)

We can then recover x by inverting G. An example;

2But remember �
R s
t
r(v)dv =

R t
s
r(v)dv:
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_x (t) = (x (t) t)2 (55)

_x (t)x (t)�2 = t2: (56)

Now let g (x) = x�2 implyingG (x) = �x�1. Then since dG(x(t))
dt

= _x (t) g (x (t)) =

_x (t)x (t)�2, we have

dG (x (t))

dt
= t2 (57)

G (x (t)) = �x (t)�1 =
Z
t2dt+ c =

t3

3
+ c: (58)

Using the fact that z = G (x) = �x�1 ) x = �z�1, so the inverse function
is given by G (z) = �z�1, we get

x (t) = G�1
�
t3

3
+ c

�
= �

�
t3

3
+ c

��1
:

3.2 Linear di¤erential equations of higher order

3.2.1 Linear second order di¤erential equations

A linear second order di¤erential equation has the form

�y (t) + p (t) _y (t) + q (t) y (t) = R (t) (59)

This cannot be solved directly by transformations in the simple way we
did with �rst order equations. Instead we use a more general method (that
would have worked above also). First some de�nitions

De�nition 1 The homogeneous part of di¤erential equation is achieved by
setting all exogenous variables, including constants, to zero.

De�nition 2 Two functions y1(t)and y2(t) are linearly independent in a re-
gion 
 i¤ there is no c1; c2 6= f0; 0g s.t.

c1y1(t) = c2y2(t) 8t 2 
: (60)

Result 10 The general solution (the complete set of solutions) to a di¤er-
ential equation is the general solution to the homogeneous part plus any par-
ticular solution to the complete equation.
The general solution of the homogeneous part of a second order linear

di¤erential equation can be expressed as c1y1(t) + c2y2(t), where y1(t) and
y2(t) are two linearly independent particular solutions to the homogeneous
equations and c1 and c2 are some arbitrary integration constants.
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3.2.2 Homogeneous Equations with Constant Coe¢ cients

Consider the homogeneous part of a di¤erential equation, given by

�y (t) + p _y (t) + qy (t) = 0: (61)

To solve this equation, we �rst de�ne the characteristic equation, for this
equation;

r2 + pr + q = 0: (62)

Since this is a second-order polynomial, it has two roots

r1;2 = �
1

2
p� 1

2

p
(p2 � 4q): (63)

Now, it is straightforward to see that er1t and er2t both are solutions to
the homogeneous equation, by noting that for i 2 f1; 2g

derit

dt
= rie

rit (64)

d2erit

dt2
= r2i e

rit ! (65)

d2erit

dt2
+ p

derit

dt
+ qerit =

�
r2i + pri + q

�
erit = 0: (66)

So then, result 10 tells us that the general solution to the homogenous
equation is

yh (t) = c1e
r1t + c2e

r2t; (67)

provided er1t and er2t are linearly independent. It is easy to verify that this
is the case, if and only if r1 6= r2:

3.2.3 Complex roots

Complex roots pose no particular di¢ culty, we simply have to recall that for
any real number b

ebi = cos (b) + i sin (b) ; (68)

e�bi = cos (b)� i sin (b) ; (69)

yielding for the complex roots r1;2 = a� bi;

c1e
(a+bi)t + c2e

(a�bi)t = (70)

c1e
at (cos (bt) + i sin (bt)) + c2e

at (cos (bt)� i sin (bt)) (71)

= eat ((c1 + c2) cos (bt) + (c1 � c2) i sin (bt)) (72)
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Note here, that c1 and c2 are any constants in the space of complex
numbers are. De�ning

c1 + c2 � �c1; (73)

(c1 � c2) i � �c2; (74)

It turns out that for any �c1 and �c2 on the real line, we can �nd c1 and c2
satisfying this de�nition. Since we, at least in economics, are only interested
in solutions in the real space, we can use the restricted set of constants
satisfying �c1 and �c2 being on the real line. We can then write the general
solution in the real space as

yh (t) = e
at (�c1 cos (bt) + �c2 sin (bt)) : (75)

3.2.4 Repeated roots

The general solution to the homogenous equation in the case when the roots
are repeated, i.e., r1 = r2 � r is

yh (t) = c1e
rt + c2te

rt: (76)

Convince yourself that they are linearly independent and check that they
are both solutions if the roots are repeated but not otherwise!

3.2.5 Non-Homogeneous Equations with Constant Coe¢ cients

Relying on result 10, the only added problemwhen we have a non-homogeneous
equation is that we have to �nd one particular solution to the complete equa-
tion. Consider

�y (t) + p _y (t) + qy (t) = R (t) : (77)

Typically we guess a form of this solution and then use the method of un-
determined coe¢ cients. Often a good guess is a solution of a form similar
to R(t), e.g., if it is a polynomial of degree n we guess on a general n0th de-
gree polynomial with unknown coe¢ cients. The simplest example is if R (t)
equals a constant R, we then guess on a constant, yp (t) = yss, i.e., a steady
state, in which case �y (t) and _y (t) both are zero. To satisfy the di¤erential
equation,

qyss = R (78)

yss =
R

q
: (79)
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Another example is

�y (t)� 2 _y (t) + y (t) = 3t2 + t; (80)

in which case we guess

yp (t) = At
2 +Bt+ C; (81)

for some, yet undetermined coe¢ cients A;B and C. We then solve for
these constants by substituting into the di¤erential equation

2A� 2 (2At+B) + At2 +Bt+ C = 3t2 + t: (82)

For this to hold for each t, we need

A = 3 (83)

�4A+B = 1 (84)

2A� 2B + C = 0 (85)

yielding A = 3; B = 13; and C = 20: So a particular solution is

yp (t) = 3t
2 + 13t+ 20: (86)

The characteristic equation is

r2 � 2r + 1 = (r � 1)2 ! r1;2 = 1: (87)

So the general solution is

y (t) = c1e
t + c2te

t + 3t2 + 13t+ 20: (88)

3.2.6 Linear nth Order Di¤erential Equations

Consider the nth order di¤erential equation

yn (t) + P1y
n�1 (t) + :::+ Pny (t) = R (t) ; (89)

where

yn (t) � dny (t)

dtn
: (90)

The solution technique is here exactly analogous to the second order case.
First, some de�nitions
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De�nition 3 For any di¤erentiable function y (t), the di¤erential operator
D is de�ned as

Dy (t) � dy (t)

dt
; (91)

satisfying Dny (t) � dny(t)
dtn

:

Using this de�nition, and de�ning the following polynomial,

P (r) � rn + P1rn�1 + :::+ Pn; (92)

we have

P (D) y (t) =
�
Dn + P1D

n�1 + :::+ Pn
�
y (t) (93)

= Dny (t) + P1D
n�1y (t) + :::+ Pny (t) (94)

so we can write (89) in the condensed form,

P (D) y (t) = R (t) (95)

and the characteristic equation is

P (r) = 0; (96)

with roots r1;:::;n
The general solution to the homogenous part is then the sum of the n

solutions corresponding to each of n roots. The only thing to note is that if
one root, r, is repeated k � 2 times, the solutions corresponding to this root
are given by

c1e
rt + c2te

rt + :::+ ckt
k�1ert: (97)

Repeated complex roots are handled the same way. Say the root a � bi
is repeated in k pairs. Their contribution to the general solution is given by

eat (c1 cos (bt) + c2 sin (bt) + t (c3 cos (bt) + c4 sin (bt))) + ::: (98)

+eattk�1 (c2k�1 cos (bt) + c2k sin (bt)) : (99)

A particular solution to the complete equations can often be solved by
the method of undetermined coe¢ cients.
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3.3 Stability

From the solutions to the di¤erential equations we have seen we �nd that
the terms corresponding to roots that have positive real parts (unstable, or
explosive roots) tend to explode as t goes to in�nity. This means that also
the solution explodes unless the corresponding integration constants are zero.
Terms with roots that have negative real parts (stable roots), on the other
hand, always converge to zero.
If all roots are strictly negative for a di¤erential equation, P (D) y (t) = r,

the system converges to a unique point as time goes to in�nity, wherever it
starts. This point is often called a sink and the system is de�ned as globally
stable.
If all roots are strictly positive the system is globally unstable, but there

is still a steady-state, this is sometimes called the origin. The reason for this
is that if the system is unstable in all dimensions when time goes forward,
it will be stable in all dimensions if time goes in reverse. Starting from any
point and going backward, one reaches, in the limit the steady state, i.e., it
is the origin of all paths.
If a system has both stable and unstable roots, it is called saddle-path

stable. Then, in some sub-dimensions it is stable.

3.3.1 Non-linear equations and local stability

Look at the nonlinear di¤erential equation

_x (t) = x (t)2 � 4: (100)

Although we have not learned how to solve such an equation, we can say
something about it. Let us plot the relation x (t)! _x (t)
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_x (t) = x (t)2 � 4

We see that x(t) = 2 and x(t) = �2 are stationary points. We also see
that x(t) = �2 is locally stable. In the region [�1; 2) x converge to x = �2.
2 is an unstable stationary point and in the region (2;1], x explodes over
time. In a plot x (t)! _x (t) ; local stability is equivalent to a negative slope
at the stationary point.

3.4 Systems of Linear First Order Di¤erential Equa-
tions

Consider the following system of two �rst order di¤erential equations�
_y1 (t)
_y2 (t)

�
=

�
a11 a12
a21 a22

� �
y1 (t)
y2 (t)

�
+

�
p1 (t)
p2 (t)

�
(101)

_y (t) = Ay (t) + p (t) (102)

As in the one equations case we start by �nding the general solutions
to the homogeneous part. This plus some particular solution is the general
solution to the complete system.
If the o¤ diagonal terms are zero the solution to the homogeneous part is

trivial, since there is no interdependency between the equations�
_y1 (t)
_y2 (t)

�
=

�
a11 0
0 a22

� �
y1 (t)
y2 (t)

�
(103)
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!
�
y1 (t)
y2 (t)

�
=

�
ea11t 0
0 ea22t

� �
c1
c2

�
: (104)

The system in (103) has an important property, time has no direct e¤ect
on the law-of-motion. Given knowledge of y1 (t) and y2 (t), _y1 (t) and _y2 (t)
are fully determined, regardless of t. A system that has this property is called
autonomous. The system (101) is not an autonomous system, unless p (t) is
constant. Note that the homogeneous solution is always autonomous, given,
of course, that the parameters are constant.
The behavior of an autonomous system can be depicted in a graph, a

phase diagram. We see in the phase diagram that if the roots are stable,
i.e., negative, the homogeneous part always goes to zero as t goes to in�nity.
With only one root stable, there is just one stable path.

y2

y1

y2

y1

Two stable roots One stable roots

The fact that it is trivial to solve a diagonal system, suggests a way of
�nding the solution to the homogeneous part of (101). Suppose we can make
a transformation of the variables so that the transformed system is diagonal.
Start by de�ning the new set of variables�

x1 (t)
x2 (t)

�
� B

�
y1 (t)
y2 (t)

�
! (105)�

_x1 (t)
_x2 (t)

�
� B

�
_y1 (t)
_y2 (t)

�
= BA

�
y1 (t)
y2 (t)

�
= BAB�1

�
x1 (t)
x2 (t)

�
(106)

If we can �nd a B such that BAB�1 is diagonal we are half way. The
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solutions for x is then

(107)�
x1 (t)
x2 (t)

�
=

�
er1t 0
0 er2t

� �
c1
c2

�
(108)

where r1;2 are the diagonal terms of the matrix BAB�1.The solution for
y then follows from the de�nition of x�

y1 (t)
y2 (t)

�
= B�1

�
er1t 0
0 er2t

� �
c1
c2

�
: (109)

From linear algebra we know that B�1 is the matrix of eigenvectors of A
and that the diagonal terms of BAB�1 are the corresponding eigenvalues.
The eigenvalues are given by the characteristic equation of A����� a11 � r a12

a21 a22 � r

����� = 0 (110)

! (a11 � r) (a22 � r)� a12a21 = 0 (111)

r2 � rTr (A) + jAj = 0; (112)

where Tr (A) is the trace of A: The only crux is that we need the roots to
be distinct, otherwise B�1 is not always invertible. Distinct roots imply that
B�1 is invertible. (If A is symmetric B�1 is also invertible.)
Let us draw a phase diagram with the eigenvectors of A. The dynamic

system behaves as the diagonal one but the eigenvectors have replaced the
standard, orthogonal axes.
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y2y2

y1

One stable roots

One stable root

What is remaining is to �nd a particular solution of the complete system.
One way is here to use the method of undetermined coe¢ cients. Sometimes,
we can �nd a steady state of the system, i.e., a point where the time deriv-
atives are all zero. This is easy if the exogenous part is constant. We then
set the di¤erential equal to zero so

0 = Ay (t) + p (113)

! yp (t) = y
ss = �A�1p: (114)

Given that we know the value of y (0) we can now give the general solu-
tion. The formula is given in matrix form and is valid for any dimension of
the system. First de�ne

r (t) �

2664
er1t 0 :: 0
0 er2t :: 0
: : : :
0 0 : ernt

3775 ; (115)
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then we have

y (t) = B�1x (t) + yss = B�1r (t) c+ yss (116)

y (0) = B�1x (0) + yss = B�1c+ yss (117)

c = B (y (0)� yss) (118)

! y (t) = B�1r (t)B (y (0)� yss)+yss: (119)

The method outlined above works also in the case of complex roots of the
characteristic equation. If the roots are a� bi we have

y (t) = B�1
�
e(a+bi)t 0
0 e(a�bi)t

�
c+ yss (120)

Example; �
_y1 (t)
_y2 (t)

�
=

�
�1 �1
1 �1

� �
y1 (t)
y2 (t)

�
+

�
1
1

�
(121)

r1;2 = �1� i (122)

B�1 =

�
i �i
1 1

�
: (123)

So,

! y (t) = (124)�
i �i
1 1

� �
e�t (cos t+ i sin t) 0

0 e�t (cos t� i sin t)

� �
c1
c2

�
+yss (125)

= e�t
�
i (c1 � c2) cos t� (c1 + c2) sin t
(c1 + c2) cos t+ i (c1 � c2) sin t

�
+yss (126)

= e�t
�
~c1 cos t+ ~c2 sin t
�~c2 cos t+ ~c1 sin t

�
+yss (127)

The steady-state is found from,

0 =

�
�1 �1
1 �1

� �
y1 (t)
y2 (t)

�
+

�
1
1

�
(128)�

yss1
yss2

�
= �

�
�1 �1
1 �1

��1 �
1
1

�
=

�
0
1

�
: (129)

If we know y (0), and using cos 0 = 1 and sin 0 = 0;we get�
y1 (0)
y2 (0)

�
=

�
~c1
�~c2

�
+

�
0
1

�
(130)

! y (t) = e�t
�
y1 (0) cos t� (y2 (0)� 1) sin t
(y2 (0)� 1) cos t+ y1 (0) sin t

�
+

�
0
1

�
(131)
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A phase-diagram of this system is an inward spiral.

0.75 0.5 0.25 0.25 0.5 0.75 1

1

0.5

0.5

1

1.5

2
y2

y1
(132)

How would it look like if the real part of the root was �1 or +1?

3.4.1 Equivalent Systems

In the repeated root case the matrix of the eigenvectors may be singular, so
that we cannot �nd B�1. Then we use the method of equivalent systems,
described in this section.
A linear nth order di¤erential equation is equivalent to a system of n �rst

order di¤erential equations. Consider,
...
y (t) + a1�y (t) + a2 _y (t) + a3y (t) = R (t) (133)

We can transform this into a system of �rst order di¤erential equation by
de�ning

_y (t) � x1 (t) ; (134)

�y (t) � x2 (t) = _x1 (t) ; (135)
...
y (t) = _x2 (t) ; (136)

giving 24 _y (t)
_x1 (t)
_x2 (t)

35 =
24 0 1 0

0 0 1
�a3 �a2 �a1

3524 y (t)
x1 (t)
x2 (t)

35+
24 0

0
R (t)

35 (137)
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Since the equations are equivalent they consequently have the same so-
lutions. Sometimes one of the transformations is more convenient to solve.
Let us also transform a two dimensional system into a second order equation�

_x1 (t)
_x2 (t)

�
=

�
a11 a12
a21 a22

� �
x1 (t)
x2 (t)

�
+

�
k1
k2

�
: (138)

First use the �rst equation to express x2 and then take the time derivative
of the �rst. Then we can eliminate x2 and its time derivative

_x1 (t) = a11x1 (t) + a12x2 (t) + k1 (139)

x2 (t) =
_x1 (t)� a11x1 (t)� k1

a12
(140)

_x2 (t) =
�x1 (t)� a11 _x1 (t)

a12
(141)

�x1 (t)� a11 _x1 (t)
a12

= a21x1 (t) + a22
_x1 (t)� a11x1 (t)� k1

a12
+ k2 (142)

�x1 (t)� (a11 + a22) _x1 (t) + (a22a11 � a12a21)x1 (t) = �a22k1 + a12k2 (143)

Note that the characteristic equation of this second order equation is the
same as the one for the system in (138). Consequently, the roots and thus
the dynamics are identical.

3.5 Non-linear systems and Linearization

Phase diagrams are convenient to analyze the behavior of a 2 dimensional
system qualitatively that we cannot or prefer not to solve explicitly. E.g., if

_c (t) = g1 (c (t) ; k (t)) (144)
_k (t) = g2 (c (t) ; k (t)) (145)

The �rst step here is to �nd the two curves in the c; k-space where c
and k, respectively are constant. Setting the time derivatives equal to zero
de�nes two relations between c and k, which we denote by G1 and G2:

g1 (c (t) ; k (t)) = 0! c = G1 (k) (146)

g2 (c (t) ; k (t)) = 0! c = G2 (k) (147)

We then draw these curves in the c; k-space. For example, you will in the
macro course analyze the Ramsey optimal consumption problem, where out-
put is f (k) ; interest rate is f 0 (k) ; the subjective discount rate is � and utility
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is u (c) where u and f are assumed to be concave functions. The model will
deliver the following system of di¤erential equations

_c (t) = � u
0 (c (t))

u00 (c (t))
(f 0 (k (t))� �) (148)

_k (t) = f (k (t))� c (t) : (149)

Setting the time derivatives to zero we get

f 0 (k (t)) = �; (150)

c = f (k (t)) : (151)

Draw these curves in the c; k space

¢ =k t( ) 0

¢ =c t( ) 0c

k

We then have to �nd the signs of time derivatives, and above and below
their respective zero motion curves. From (148), we see that

@ _c (t)

@k
= � u

0 (c)

u00 (c)
f 00 (k) < 0 (152)

@ _k (t)

@c
= �1: (153)

This means that _c is positive to the left of and negative to the right of
the curve _c = 0. For _k, we �nd that it is positive below and negative above
_k = 0. Then draw these motions as arrows in the phase diagram. Note that
no paths ever can cross.
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¢ =k t( ) 0

¢ =c t( ) 0c

k

We conclude that this system has saddle point characteristics and thus
has only one stable trajectory towards the steady state.
The behavior close to the steady state should also be evaluated by means

of linearization around the steady state. We do that by approximating in
the following way�

_c (t)
_k (t)

�
�
"

@g1(css;kss)
@c

@g1(css;kss)
@k

@g2(css;kss)
@c

@g2(css;kss)
@c

# �
c (t)� css
k (t)� kss

�
: (154)

with an obvious generalization to higher dimensions.
We now evaluate the roots of the matrix of derivatives. In the example

we �nd that the coe¢ cient matrix is

"
@g1(css;kss)

@c
@g1(css;kss)

@k
@g2(css;kss)

@c
@g2(css;kss)

@c

#
(155)

=

�
� (f 0 � �) @

@c

�
u0

u00

�
� u0

u00f
00

�1 f 0

�
; (156)

where all functions are evaluated at the steady state. There, f 0 = �, implying
that the matrix simpli�es to �

0 � u0

u00f
00

�1 f 0

�
(157)
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with eigenvalues
1

2

 
f 0 �

r
(f 0)2 + 4

u0

u00
f 00

!
(158)

which clearly are of opposite signs.

3.6 Example: Steady-state asset distributions

In this example, we use our derived skills to �nd the steady-state wealth
distribution in a simple model. As we will see, here the model gives us a
system of di¤erential equations for the wealth distribution that we can solve
easily. We will see that the methods we have learned work as well when the
di¤erential equations are in wealth, rather than time.
In (Hassler and Mora, JPub, 1999), we analyze preferences over unem-

ployment insurance in a very simple continuous time economy where agents
can borrow and save at rate r. In the model, employed individuals earn a
wage w per unit of time and become unemployed with an instantaneous prob-
ability q: This means that over a small (in�nitesimal) interval of time dt; the
probability of becoming unemployed is qdt: Unemployed individuals receive
a �ow of unemployment bene�ts b and become rehired with instantaneous
probability hdt: In addition, we assume that there is a instantaneous death
probability of � and that there is an in�ow of newborn unemployed with zero
assets of � so that the total population is constant.
In the paper, we show that if individuals have CARA utility (U = �ec)

and wages and bene�ts are constant, individuals choose constant savings
amounts for each of the two employment states. Denoting these se and su,
where se > 0 and su < 0, we have that individual asset accumulation for the
two types, conditional on surviving is

_At = se; (159)

for employed and
_At = su (160)

for unemployed.
In the paper, we don�t calculate the steady state wealth distribution of

assets. That�s the purpose of this exercise. First, we calculate the steady
state share of unemployed, �u. For this purpose, we note that in steady state,
the in�ow and the out�ow to the stock of unemployed must be constant.
Thus,
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(1� �u) q + � = �u (h+ �) (161)

! �u =
q + �

q + h+ �
(162)

Now, we want to calculate the steady state distribution of assets among
employed and unemployed in this economy. Let us denote these densities,
by fe(A) and fu(A): We will derive these by solving a system of di¤eren-
tial equations. Consider �rst the number (density) of employed individuals
with assets A 6= 0, given by fe (A). Over a small period dt, a number
fe(A) (1� (� + q) dt) of them remain employed and alive. Over the same
time, a number fu(A)hdt of unemployed with assets A become hired. Fi-
nally, over the period dt these individuals add to their assets an amount
sedt: Writing this down yields,

fe(A+ sedt) = fe(A) (1� (� + q) dt) + fu(A)hdt; (163)

fe(A) + f
0
e(A)sedt = fe(A) (1� (� + q) dt) + fu(A)hdt (164)

f 0e(A) = �fe(A)
� + q

se
+ fu(A)

h

se
: (165)

By the same reasoning,

fu(A+ sedt) = fu(A) (1� (� + h) dt) + fe(A)qdt; (166)

fu(A) + f
0
u(A)sedt = fu(A) (1� (� + h) dt) + fe(A)qdt (167)

f 0u(A) = �fu(A)
� + h

su
+ fe(A)

q

su
; (168)

yielding the system�
f 0e(A)
f 0u(A)

�
=

�
� �+q

se
h
se

q
su

� �+h
su

� �
fe(A)
fu(A)

�
: (169)

� A

�
fe(A)
fu(A)

�
(170)

Let us now, assign some numbers to the parameters. Say � = 1=40; h =
2; q = 1=5; se = 1 and su = �2, all measured as probabilities per year. Then,
we can calculate the roots and the eigenvalues

r1 =
63

160
+

1

160

p
4681 � :821 (171)

r2 =
63

160
� 1

160

p
4681 � �0:0339 (172)

B�1 =

�
1 1

99
320
+ 1

320

p
4681 99

320
� 1

320

p
4681

�
�
�
1:0 1:0
:523 0:0956

�
:(173)
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Thus, except at A = 0, where there is an in�ow of newborn, that we have
not considered, we have

�
fe(A)
fu(A)

�
= B�1r (t) c (174)

=

�
1:0 1:0
:523 0:0956

� �
e:821A 0
0 e�0:0339A

� �
c1
c2

�
(175)

=

�
c1e

:821A + c2e
�:0339A

:523c1e
:821A + :0956c2e

�:0339A

�
(176)

Now, we �rst note that fe(A) and fu(A) cannot be explosive in any of
the directions. That would violate that these functions are densities, i.e., the
sum of their respective integrals over the real line must be unity. Thus, for
A < 0, c2 must be zero and for A > 0; c1 = 0: Furthermore, we knowZ 1

�1
fe(A)dA = 1� �u =

h

q + h+ �
� 0:899 (177)Z 1

�1
fu(A)dA = �u =

q + �

q + h+ �
� 0:101: (178)

Using this, we can calculate the integrations constants.Z 1

�1
fe(A)dA =

Z 0

�1
c1e

:821AdA+

Z 1

0

c2e
�:0339AdA (179)

=
c1
0:821

+
c2
:0339

= 0:899 (180)Z 1

�1
fu(A)dA =

Z 0

�1
:523c1e

:821AdA+

Z 1

0

:0956e�:0 339AdA (181)

=
:523c1
0:821

+
0:0956c2
:0339

= 0:101 (182)

Yielding,

c1 = 0:0289; (183)

c2 = 0:0293: (184)

This concludes our calculations,

fe(A) =

�
0:0289e: 821A for A < 0
0:0293e�:0339A for A > 0

; (185)

fu(A) =

�
0:0151e:821A for A < 0

0:00280e�:0 339A for A > 0
: (186)
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Plotting the densities, using a solid (dotted) line to denote wealth of

employed (unemployed), we see that unemployed are more concentrated to
the left. We can also calculate average assets among the two types from

Ae =

Z 1

�1
Afe(A)dA = (187)Z 0

�1
A � 0:0289e:821AdA+

Z 1

0

A � 0:0293e�:0 339AdA � 25:45 (188)

Au =

Z 1

�1
Afu(A)dA = (189)Z 0

�1
A � 0:0151e:821AdA+

Z 1

0

A � 0:00280e�:0 339AdA � 2:41 (190)
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4 Di¤erence equations

4.1 Sums, forward and backward solutions

4.1.1 Sums vs. Integrals

Di¤erence equations can be solved in ways very similar to how we solve
di¤erential equations. First, we will look at the analogy to integrals.
Consider the di¤erence equation

At � At�1 � �At = qt (1)

where �At is the change in A per unit (interval) of time. We sum both sides
from some date t0 until t to get

tX
s=t0

�As = At � At0�1 =
tX

s=t0

qs: (2)

We can then write the solution as

�At = qt (3)

! At =
tX

s=t0

qs + At0�1: (4)

As we see, this is very much like integrals

dA (t)

dt
= q (t) (5)

! A (t) =

Z t

t0

q (s) ds+ At0 ; (6)

and the relation between qt and
Pt

s=t0
qs is the same as between q (t) and its

primitive, since

�

tX
s=t0

qs = qt: (7)

4.1.2 Forward and backward solutions

The part
Pt

s=t0
qt of the RHS of (4) is exogenous, i.e., independent of At.

Sometimes, it converges in one or both directions. Then we can write the
solutions in another way. Suppose the following limit exists
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lim
T!1

tX
s=�T

qs �
tX

s=�1
qs: (8)

Then, the other part of RHS of (4) should also have a well-de�ned limit

lim
T!1

A�T � A; (9)

so that the solution is

At =

tX
s=�1

qs + A: (10)

Clearly, (10) solves (1),

At � At�1 =
tX

s=�1
qs + A�

t�1X
s=�1

qs � A = qt: (11)

If the solution in (10) exists, it is called the backward solution.
Analogously, the limit

lim
T!1

TX
s=t

qs �
1X
s=t

qs; (12)

might exist, in which case

lim
T!1

AT � �A (13)

also exists. Then, we have

lim
T!1

(AT � At) =

1X
s=t+1

qs; (14)

! At = �A�
1X

s=t+1

qs; (15)

which is called the forward solution.
Example. Suppose qt follows a simple AR(1) process

�At = qt; (16)

qt = rqt�1: (17)
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If r < 1; we can use the forward solution and if r > 1, the backward
solution works. In the former case,

1X
s=t+1

qs =
1X
s=0

qt+1r
s =

qt+1
1� r ; (18)

! At = �A� qt+1
1� r ; (19)

where �A is determined from, for example, an initial condition. In the latter
case,

tX
s=�1

qs =
1X
s=0

qtr
�s = qt

r

r � 1 (20)

At = qt
r

r � 1 + A: (21)

4.1.3 First order di¤erence equations with constant coe¢ cients

A �rst order di¤erence equation with constant coe¢ cients has the following
form.

xt � axt�1 = c (22)

As we see, the LHS is not a pure di¤erence, as in (1), so we cannot simply
sum over t. Instead we rely on the following result.

Result 11 The general solution (the complete set of solutions) to a di¤er-
ence equation is the general solution to the homogeneous part plus any par-
ticular solution to the complete equation.
The general solution to the homogeneous �rst order di¤erence equation

with coe¢ cient a can be written

xht = Aa
t (23)

where A is an arbitrary constant.

A particular solution is sometimes the steady state which exists for (22)
if a 6= 1:

xss � axss = c (24)

! xss =
c

1� a: (25)
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4.1.4 Non-constant RHS

Now look at
xt � axt�1 = qt: (26)

A way to solve (26) is to use a�t as the analogue to the integrating factor.
Multiplying both sides by a�t yields

a�t (xt � axt�1) = a�tqt: (27)

Now, we see that the LHS can be written �(a�txt), implying

�
�
a�txt

�
= a�tqt; (28)

) a�txt =

tX
s=t0

a�sqs + A; (29)

a�txt =
tX

s=t0

a�sqs + A; (30)

xt = Aat +
tX

s=t0

at�sqs: (31)

Again, we should verify that this satis�es our original di¤erence equation.

4.1.5 Stable growth �the Solow growth model

Often in macro, the variables in the model grow in a way that precludes the
existence of a steady state. However, some transformation of the variables
might possess a steady state. The simplest example of this is the Solow
growth model We will �rst solve the model in trending variables and then
do it in transformed (detrended) variables. As we know, the savings rate is
exogenous and denoted S and the labor supply Nt follows

Nt = e
gNt�1 � (1 + g)Nt�1: (32)

There is one good, used for consumption and as capital, which follows
the law-of-motion

Kt+1 = Sf (Kt; Nt) ; (33)

where f (Kt; Nt) is a concave production function. Let us specify production
as the CRS Cobb-Douglas function,

f (Kt; Nt) = N1��
t K�

t ; (34)

1 > � > 0: (35)
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Letting lower case letters denote natural logarithms, we have

kt+1 = s+ (1� �)nt + �kt; (36)

kt+1 � �kt = s+ (1� �)nt; (37)

and

�nt = g (38)

! nt =
tX
0

g + n = tg + n; (39)

for some constant n:
Here, we can guess on a particular solution of the same form as the RHS,

i.e.,

kt = k + tgk (40)

k + (t+ 1) gk � � (k + tgk) = s+ (1� �)nt (41)

k (1� �) + t (1� �) gk + gk = s+ (1� �)n+ t (1� �) g (42)

For this to hold for all t, we need

gk = g; (43)

k =
s� g
1� � + n: (44)

giving a particular solution

kp;t =
s� g
1� � + n+ tg: (45)

This solution is in economics often called a balanced growth path, in which
all variables grow at the same rate. The complete solution is

kt = Aat +
s� g
1� � + n+ tg; (46)

kt =

�
k0 �

�
s� g
1� � + n

��
at +

s� g
1� � + n+ tg: (47)

In this case, a convenient alternative is to de�ne a new variable, capital
per capita, Ct � Kt=Nt ! ct = kt � nt. Using this, and dividing (34) by Nt,
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we get

Kt+1

Nt
=

Sf (Kt; Nt)

Nt
(48)

Kt+1Nt+1
Nt+1Nt

=
SN1��

t K�
t

Nt
= (49)

Ct+1e
g = S

�
Kt

Nt

��
(50)

ct+1 + g = s+ �ct (51)

ct+1 � �ct = s� g (52)

! css =
s� g
1� � (53)

ct =

�
c0 �

s

1� �

�
�t +

s

1� �; (54)

coinciding with the solution in (46) but now expressed as steady state in
capital per capita, rather than a balanced growth path for capital.
We can also look at the log of output per capita,

yt = �ct; (55)

yt =

�
y0 � �

s

1� �

�
�t + �

s

1� �: (56)

This is the basis for the so-called growth regressions, pioneered by Barro,

yt � y0 = �y0
�
1� �t

�
+

s

1� ��
�
1� �t

�
; (57)

where growth over a sample period 0 through t is seen to depend negatively
on initial output and positively on savings. Also,

yt � yt�1 =

�
y0 � �

s

1� �

�
�t + �

s

1� � (58)

�
�
y0 � �

s

1� �

�
�t�1 � � s

1� � (59)

= �
�
y0 � �

s

1� �

�
�t�1 (1� �) (60)

=

�
�

s

1� � � yt�1
�
(1� �) : (61)

As we see, the growth rate (the log di¤erence) of output per capita is a
fraction (1� �) of the di¤erence between the steady state and current output
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per capita. Note that convergence is slower the larger is the capital�s share
of output. In the limit when � ! 1, the model shows no convergence and
has become an endogenous growth model, with

�kt = s; (62)

�ct = �yt = s� g: (63)

4.2 Linear di¤erence equations of higher order

4.2.1 Higher order homogeneous di¤erence equations with con-
stant coe¢ cients

Consider the homogeneous di¤erence equation

xt+n + a1xt+n�1 + :::anxt = 0; (64)

De�nition 4 The forward operator E is de�ned by

Esxt � Ext+s (65)

where s is any integer, positive or negative.

We can then write (64) in a condensed polynomial form

P (E)xt = 0: (66)

We then have to �nd the roots of the equation

P (r) = rn + a1r
n�1 + :::an = 0 (67)

Each root contributes to the general solution with one term that is inde-
pendent of the others, exactly as with di¤erential equations.

Result 12 Let rs denote the roots to the polynomial P (r), i.e., all solutions
to P (r) = 0. Let the �rst k � 0 roots be distinct and the remaining l = n�k
roots repeated. Then, the general solution to (64) is

xt = c1r
t
1 + :::+ ckr

t
k + r

t
k+1

�
ck+1 + tck+2 + :::+ t

l�1ck+l
�

(68)

If there is more than one set of repeated roots, each set of size m � 2 con-
tributes with m linearly independent terms

rtk+1
�
ck+1 + tck+2 + :::+ t

m�1ck+m
�
: (69)
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In the case of complex roots, express the complex number in polar form3

r = a+ bi = jrj (cos � + i sin �) ; (70)

jrj =
p
a2 + b2; (71)

� = tan�1
b

a
: (72)

We then use the fact that

ei� = (cos � + i sin �) (73)

r = jrj ei� ! rt = jrjt ei�t = jrjt (cos t� + i sin t�) (74)

to get for the complex conjugates r1;2 = a� bi;

c1r
t
1 + c2r

t
2 = jrj

t (~c1 cos t� + ~c2 sin t�) (75)

which we can see is a generalization of (68). Complex roots thus give us
oscillating solutions.

4.2.2 Stability

From the solutions (68) and (75), it is clear that roots such that jrj < 1;give
converging terms.

4.2.3 Higher order non-homogeneous di¤erence equations with
constant coe¢ cients

Result 13 The general solution to a non-homogeneous di¤erence equation
with constant coe¢ cients is given by the general solution to the homogeneous
part plus any solution to the full equation.

To solve non-homogeneous equations we thus have to �nd particular so-
lution to the complete equation to add to the general solution of the homo-
geneous part. The simplest non-homogeneous di¤erence equation is

P (xt) = c: (76)

3Note that the formula � = tan�1 ba is valid only for � 2 (��=2; �=2] : For example, if
r1;2 = � 1

2 �
1
2

p
3i we note that

�1
2
+
1

2

p
3i = e�i

4
3�;

�1
2
� 1
2

p
3i = ei

4
3�:
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Here, we try a steady state

P (xss) = P (1) xss = c (77)

xss =
c

P (1)
(78)

provided P (1) 6= 0:
In the more general case we often have to guess a particular solution.

4.3 Systems of linear �rst order di¤erence equations

Systems of �rst order di¤erence equations are solved with the diagonalization
method that we also used for the di¤erential equation.

2664
x1;t+1
x2;t+1
:

xn;t+1

3775 = A

2664
x1;t
x2;t
:
xn;t

3775+P (79)

xt+1 = Axt +P: (80)

First we �nd the diagonalizing matrix of eigenvectors B�1. Then we solve
the homogeneous equation by de�ning

yt+1 = Bxt+1 (81)

= BAxt (82)

= BAB�1yt (83)

=

2664
rt1 0 : 0
0 rt2 : 0
: : : :
0 0 : rtn

3775
2664
c1
c2
:
cn

3775 (84)

� rtc: (85)

Then we transform back4

xt+1 = B
�1yt+1 = B

�1rtc: (86)

A particular solution to the complete equation then has to be added.
Here we might try to �nd a steady state as a particular solution

4Since the vector of constants, c, is arbitrary, we may equally well write xt = B�1rtc.
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xss = Axss +P; (87)

xss = (I�A)�1P: (88)

If we have the initial conditions we �nd that

xt+1 = B�1rtc+ xss (89)

x1 = B�1r0c+ xss (90)

= B�1c+ xss (91)

c = B (x1 � xss) (92)

xt+1 = B�1rtB (x1 � xss)+xss (93)

An example;

xt+1 =

�
0 1
�1 0

�
xt +

�
�1
�1

�
: (94)

xss =

��
1 0
0 1

�
�
�
0 1
�1 0

���1 � �1
�1

�
=

�
�1
0

�
(95)

Eigenvalues are

r1;2 = i;�i! rt1;2 = 1
t
�
cos
��
2
t
�
� i sin

��
2
t
��

(96)

=
�
cos
��
2
t
�
� i sin

��
2
t
��

(97)

and

B�1 =

�
1 1
i �i

�
: (98)
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The solution is

xt =

�
1 1
i �i

� �
it 0

0 (�i)t
� �

c1
c2

�
+

�
�1
0

�
(99)

=

�
it (�i)t
it+1 (�i)t+1

� �
c1
c2

�
+

�
�1
0

�
(100)

=

�
c1i

t + c2 (�i)t
c1i

t+1 + c2 (�i)t+1
�
+

�
�1
0

�
(101)

=

2664
c1
��
cos
�
�
2
t
�
+ i sin

�
�
2
t
���

+c2
�
cos
�
�
2
t
�
� i sin

�
�
2
t
��

c1
��
cos
�
�
2
(t+ 1)

�
+ i sin

�
�
2
(t+ 1)

���
+c2

�
cos
�
�
2
(t+ 1)

�
� i sin

�
�
2
(t+ 1)

��
3775 (102)

+

�
�1
0

�
(103)

=

�
(c1 + c2)

�
cos
�
�
2
t
�
+ (c1 � c2) i sin

�
�
2
t
��

(c1 + c2)
�
cos
�
�
2
(t+ 1)

�
+ (c1 � c2) i sin

�
�
2
(t+ 1)

�� �+ � �1
0

�
(104)�

~c1
�
cos
�
�
2
t
�
+ ~c2 sin

�
�
2
t
��

~c1
�
cos
�
�
2
(t+ 1)

�
+ ~c2 sin

�
�
2
(t+ 1)

�� �+ � �1
0

�
: (105)

4.3.1 Non-invertible eigenvectors

If some roots are repeated B�1 may be non-invertible. In this case we cannot
use the diagonalization method. Instead we can use the existence of a higher
order single di¤erence equation that is equivalent to the system of �rst order
di¤erence equations we want to solve. This is exactly analogous to the case
of di¤erential equations.
Look at the following example:

xt+1 =

�
�1 1
�4 3

�
xt (106)

The eigenvalues of the coe¢ cient matrix are both 1 and the matrix of
eigenvectors are non-invertible. Now we transform the system into a second
order single di¤erence equation.
From the �rst row we have that

x1;t+1 = �x1;t + x2;t (107)

! x2;t = x1;t+1 + x1;t; (108)

x2;t+1 = x1;t+2 + x1;t+1 (109)
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Using the second row,

x2;t+1 = �4x1;t + 3x2;t (110)

! x1;t+2 + x1;t+1 = �4x1;t + 3 (x1;t+1 + x1;t) (111)

0 = x1;t+2 � 2x1;t+1 + x1;t (112)

Note that the polynomial associated with this second order di¤erence
equation is identical to the characteristic equation of the coe¢ cient matrix
in (106). Consequently, they have the same (repeated) root 1. The solution
to (110) is

x1;t = (c1 + tc2) 1
t = (c1 + tc2) (113)

With knowledge of x1;0 and x1;1, we have

x1;t = (x1;0 + t (x1;1 � x1;0)) (114)

By using (107), we can express the solution in terms of x1;t and x2;t

x1;t = x1;0 + t (x1;1 � x1;0) (115)

x2;t = x1;t+1 + x1;t (116)

= 2x1;0 + (2t+ 1) (x1;1 � x1;0) (117)

!
�
x1;t
x2;t

�
=

�
1 t
2 2t+ 1

� �
x1;0

x1;1 � x1;0

�
: (118)
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5 Dynamic Optimization in Discrete Time

5.1 Non-Stochastic Dynamic Programming

Consider the dynamic problem

max
fkt;ctgTt=1

TX
t=1

u (kt; ct; t) (1)

s.t. k1 = k (2)

kt+1 = f (kt; ct; t) ; t = 1:::; T; (3)

kT+1 = �k (4)

Before trying to solve this, notice

1. Per period payo¤ is additive over time.

2. kt cannot be changed in period t, but its future values, its law-of-motion
can be changed by ct:Wewill call k a state variable (to be more properly
de�ned later) and c a control variable. A sequence k1; k2; :::; kT+1 is said
to be admissible if and only if it satis�es the constraints (2-4) for some
sequence c1; c2; :::cT .

A direct way to solve this would be to form the Lagrangian

L =
TX
t=1

u (kt; ct; t) +
TX
t=1

�t (f (kt; ct; t)� kt+1) (5)

+�1 (k � k1) + �T+1
�
kT+1 � �k

�
(6)

with �rst order conditions

uk (kt; ct; t) + �tfk (kt; ct; t)� �t�1 = 0;8t = 2; ::; T; (7)

uc (kt; ct; t) + �tfc (kt; ct; t) = 0;8t = 1; ::; T; (8)

uk (k1; c1; 1) + �1fk (k1; c1; 1)� �1 = 0; (9)

��T + �T+1 = 0; (10)

and (2-4).
This works, at least in principle, if T is �nite. An alternative way is to

recognize that in a problem like this, each sub-section of the path must be
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optimal in itself. This means that the problem has a recursive formulation
i.e., it can be set up sequentially. We can thus solve the problem backwards
starting from the last period. In any period, the remaining problem only
depends on earlier actions through the �inherited�value of k.
For example, if the problem is over three periods (T = 3) we can rewrite

(1)

max
c1;k2jk1

�
u (k1; c1; 1) + max

c2;k3jk2

�
u (k2; c2; 2) + max

c3;k4jk3
u (k3; c3; 3)

��
(11)

s.t. kt+1 = f (kt; ct; t) ; t = 1:::; 3 (12)

k4 = �k (13)

In the �nal period (T = 3), the problem is trivial; simply set c3 so that
k4 = �k. The value of c3 that solves �k = f (k3; c3; 3) is a function of k3.5

Denote that function c3 (k3) : We can then de�ne

u (k3; c3 (k3) ; 3) � W (k3; 3) : (14)

The interpretation of W (k3; 3), is the maximum remaining pay-o¤ in
period 3, being a function of the state variable k3:
In period 2, we then want to solve

max
c2;k3

(u (k2; c2; 2) + u (k3; c3 (k3) ; 3)) (15)

s.t. k3 = f (k2; c2; 2) : (16)

Using W (k3; 3) ;we can write this

max
c2
(u (k2; c2; 2) +W (f (k2; c2; 2) ; 3)) (17)

The solution and the maximized value depends on k2 only and we called the
latter the value function and k2 the state variable. We can then de�ne

W (k2; 2) � max
c2
(u (k2; c2; 2) +W (f (k2; c2; 2) ; 3)) : (18)

The interpretation of this Bellman equation is straightforward. It says
that the maximum remaining pay-o¤ in period 2, being a function of k2, is
identically (i.e., for all k2) equal to the maximum over the control in period
2, c2; over period 2 pay-o¤ and the maximum remaining pay-o¤ in period 3
with period 3 state variable given by f (k2; c2; 2) :

5For now, we just assume it is unique.
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The trade-o¤ between generation of current and future pay-o¤ is opti-
mized by one simple FOC

uc (k2; c2; 2) +Wk (f (k2; c2; 2) ; 3) fc (k2; c2; 2) = 0: (19)

Finally, in the �rst period,

W (k1; 1) � max
c1
(u (k1; c1; 1) +W (f (k1; c1; 1) ; 2)) : (20)

If we know the value functions, the multidimensional problem has become
much simpler. The Bellman equation provides a way of verifying that the
value function we use is correct. It is of course straightforward to extend the
analysis to any �nite horizon problem, yielding

W (kt; t) � max
ct
(u (kt; ct; t) +W (kt+1; t+ 1)) (21)

s.t. kt+1 = f (kt; ct; t) (22)

5.1.1 Discounting and the Current Value Bellman equation

Very often in macroeconomics, the objective function is a discounted sum of
pay-o¤s, i.e., (1) can be written

max
fcgTt=1

TX
t=1

�t�1u (kt; ct; t) : (23)

In this case, it is convenient to work with current value functions, V (k; t)
which should be interpreted as the maximum remaining value that can be
achived from time t and onward, given kt and seen from period t: In other
words, given a problem

max
fcgTt=1

TX
t=1

�t�1u (kt; ct; t) (24)

s.t. kt+1 = f (kt; ct; t) ; t = 1:::; T (25)

k1 = k (26)

kT+1 = �k

we de�ne for any t 2 f1; :::; Tg

V (kt; t) � max
fc;kgTs=t

TX
s=t

�s�tu (ks; cs; s) (27)

s.t. kt+1 = f (kt; ct; t) ; t = s:::; T: (28)

kT+1 = �k:
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From this follows that

V (k; t) � ��(t�1)W (k; t) :

Using this in the Bellman equation, (where I substitute for kt+1 from the
law-of-motion) we get the current value Bellman equation

W (kt; t) � max
ct

�
�t�1u (kt; ct; t) +W (f (kt; ct; t) ; t+ 1)

�
(29)

�t�1V (k; t) � max
ct

�
�t�1u (kt; ct; t) + �

tV (f (kt; ct; t) ; t+ 1)
�

(30)

V (k; t) � max
ct
(u (kt; ct; t) + �V (f (kt; ct; t) ; t+ 1)) (31)

In practice, the current value Bellman equation is the most used variant in
macroeconomics and, therefore, you will often see the word current dropped
and (31) is simple referred to as the Bellman equation and V (k; t) is referred
to as the value function.

5.1.2 In�nite Horizon and Autonomous Problems

In an in�nite horizon problem we cannot use the method of starting from
the last period. Still, if the problem has a well-de�ned value function, it
satis�es the Bellman equation. Furthermore, under conditions we will talk
about later, there is only one function that solves the Bellman equation, so if
we �nd one function that solves the Bellman equation, we have a solution to
the dynamic optimization problem. Since geometric discounting will prove
to be important for showing uniqueness, we will use that from now on.
To �nd a solution, we will use two di¤erent approaches.

1. Guess on a value function and verify that it satis�es the Bellman equa-
tion.

2. Iterate on the Bellman equation until it converges.

Guessing is often feasible when the problem is autonomous (stationary).
Then, the problem is independent of time in the sense that given an initial
condition on the state variable(s), the solution and the maximized objective
is independent of the starting date. A problem is autonomous if

1. Time is in�nite,

2. the law of motion for the state (including constraints on the control) is
independent of time, and
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3. the per-period return function is the same over time, except for possibly
a geometric discount factor, i.e., u (k; c; t) = �tu (k; c).

(Think about what would happen if any of these conditions is not satis-
�ed). In this case, the current value function turns out to be independent
of time.6 We can then write the current Bellman equation in terms of the
current value function

V (kt) � max
ct
(u (kt; ct) + �V (kt+1)) (32)

s.t. kt+1 = f (kt; ct) : (33)

Suppose we �nd a solution to the maximization problem in the RHS of
(32). This will be a time invariant function c(k), since u; V and f are time-
invariant. Plugging c (k) into (32), we get rid of the max-operator:

V (k) = u (k; c (k)) + �V (f (k; c (k))) (34)

If (34) is satis�ed for all values of admissible k, we have a solution to the
value function, otherwise our guess was incorrect.
Note that (34) is a functional equation, i.e., the LHS and RHS have to

be the same functions. It is convenient to de�ne the RHS as

T (V (k)) � max
c
u (k; c) + �V (f (k; c)) (35)

where T operates on functions rather than on values.7 In the autonomous
case, when the value function is unchanged over time, the Bellman equation
de�nes a �xed point for T in the space of functions V ;

V (k) = T (V (k)) : (36)

(36) means that if we plug in some function of k in the RHS of (36)
we must get out the same function on the LHS. The Bellman equation is a
necessary condition for V (k) being a correctly speci�ed value function, we
will later discuss conditions under which it is also su¢ cient.
Typically the value function and the objective function are of similar

form. This is intuitive in the light of (34). For example, if the u function is
logarithmic, we guess that the value function is of the logarithmic form too.
For HARA utility functions (e.g., CRRA, CARA and quadratic) the value
functions are generally of the same type as the utility function (Merton,
1971).

6The present value function W (k; t) is not independent ot time, but separable so that
we can write W (k; t) =W (k)�t�1:

7See section 9 for more on the T -mapping.
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5.1.3 An example of guessing

In the problem (1) let time be in�nite and

u(k; c; t) = �t ln(c); (37)

f(k; c; t) = k� � c; 0 < � < 1; (38)

and let the end-condition kT+1 = �k be replaced by kt > 0 8t:
This is an autonomous problem, so we have

V (kt) = max
c;k

(u (ct) + �V (kt+1)) (39)

s.t. kt+1 = f (kt; ct) ; (40)

) V (kt) = max
c
(ln ct + �V (k

�
t � ct)) (41)

Now, guess that V is of the same form as u, here X ln kt + Y , for some
unknown constants X and Y; giving �rst order conditions

u0 (ct) = �V 0 (k�t � ct) (42)
1

ct
= �

X

k�t � ct
(43)

) ct =
k�t

1 + �X
� c (kt) : (44)

kt+1 = k�t � ct = k�t �
k�t

1 + �X
=

�X

1 + �X
k�t (45)

Plugging c (kt) into the Bellman equation yields

X ln kt + Y = ln
k�t

1 + �X
+ �

�
X ln

�X

1 + �X
k�t + Y

�
(46)

= ln
k�t

1 + �X
+ �

�
X ln

k�t
1 + �X

+X ln �X + Y

�
(47)

= (1 + �X) ln
k�t

1 + �X
+ � (X ln �X + Y ) (48)

= � (1 + �X) ln kt � (1 + �X) ln (1 + �X) (49)

+�X ln �X + �Y:

This is true for all values of k, if and only if

X = � (1 + �X) (50)

Y = � (1 + �X) ln (1 + �X) + �X ln �X + �Y: (51)
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giving

X =
�

1� �� (52)

Y =
�� ln (��) + (1� ��) ln (1� ��)

(1� �) (1� ��) (53)

) V (k) =
�

1� �� ln k +
�� ln (��) + (1� ��) ln (1� ��)

(1� �) (1� ��) : (54)

Having V (k) ; it is easy to �nd the optimal control, or the policy rule,

c (kt) =
k�t

1 + � �
1���

= (1� ��) k�t ; (55)

ln kt+1 = ln�� + � ln kt: (56)

5.1.4 Iteration

As mentioned above, an alternative way to �nd the in�nite horizon value
function is to �nd the limit of �nite horizon Bellman equation as the horizon
goes to in�nity. Under for our purposes quite general conditions this limit
exists and is equal to the value function for the in�nite horizon problem.
Let us change notation slightly, measuring time as the number of remaining
periods s until the �nal period. We then denote the (current) value function
with s periods left by

V (k; s): (57)

We also assume geometric discounting and that both pay-o¤s and the law-
of-motion for the state variable are time-independent (u(k; c; s) = u (k; c) and
f (k; c; s) = f (k; c)) so that the in�nite horizon problem is autonomous. If
the following limit is well-de�ned, we denote

lim s!1V (k; s) � V (k) : (58)

The iteration method is usually done numerically, but it can (at some
cost of messiness) be done also analytically. Using the T operator and the
Bellman equation, we �nd the limit in the following way

V (k; s) = max
cs
(u (ks; cs) + �V (f (ks; cs) ; s� 1)) (59)

� T (V (k; s� 1)) (60)

V (k; s) = T sV (k; 0) (61)

V (k) � lim
s!1

V (k; s) = lim
s!1

T sV (k; 0) : (62)
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If the limit exists, it clearly satis�es the Bellman equation

V (k) = T (V (k)) (63)

lim
s!1

T sV (k; 0) = T
�
lim
s!1

T sV (k; 0)
�
= lim

s!1
T s+1V (k; 0) : (64)

The remaining issue is what function V (k; 0) to start the iteration with.
However, suppose that we can show that the limit V (k) satis�es

lim
s!1

�sV (ks) = 0 (65)

for ALL admissable values of kt+s that can be reached, given relevant initial
conditions and other constraints. Then, it can easily be shown that the
Bellman equation is su¢ cient. Then, lims!1 T

sV (k; 0) provides a unique
solution to the Bellman equation. This means that the limit is independent
of the choice of V (k; 0) : As we see from (65), � < 1 and V (k) bounded are
su¢ cient for uniqueness. Intuitively, if � < 1 and pay-o¤s are bounded, the
pay-o¤ in the in�nite horizon has no impact on the value function. Let us
revert to measure time in the usual way. Then, if the Bellman equation is
satis�ed, we have

V (kt) = max
ct
(u (kt; ct) + �V (kt+1)) (66)

s.t. kt+1 = f (kt; ct)

max
ct

�
u (kt; ct) + �

�
max
ct+1

(u (kt+1; ct+1) + �V (kt+2))

��
(67)

s.t.kt+1 = f (kt; ct) ; kt+2 = f (kt+1; ct+1)

= max
fct+ng10

1X
n=0

�nu (kt+n; ct+n) + �
2V (f (kt+1; ct+1)) ; (68)

s.t.kt+1 = f (kt; ct) ; kt+2 = f (kt+1; ct+1) (69)

Repeating this, and taking the limit yields

V (kt) = max
fct+ngs0

sX
n=0

�nu (kt+n; ct+n) + �
s+1V (kt+n+1) ; (70)

s.t.kt+n+1 = f (kt+n; ct+n)8n 2 f0; sg (71)

V (kt) = max
fct+ng10

1X
n=0

�nu (kt+n; ct+n) + lim
s!1

�s+1V (kt+s+1) ; (72)

s.t.kt+n+1 = f (kt+n; ct+n)8n � 0; (73)
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Now, if lims!1 �
s+1V (kt+s+1) = 0; for all permissible paths of k we have

showed that

V (kt) = max
fct+sg10

1X
s=0

�su (kt+s; ct+s) (74)

s.t. kt+s+1 = f (kt+s; ct+s)8s � 0, givenkt; (75)

i.e., that the Bellman equation implies optimality.
The iteration can easily be done numerically, either by specifying a func-

tional form if we know that, or by just choosing a grid. In the latter case we
assume that the state variable must belong to a �nite set of values, say for ex-
ample that in every period k must be chosen from the setK �fk1; k2; :::; kng.
Then, we can compute the corresponding set of possible controls, cm;n 2 C
from the equation

km = f (kn; cm;n) : (76)

Then, in each iteration, we solve the Bellman equation for each k 2 K,
giving for iteration s

V (kn; s) = max
cm;n2C

(u (kn; cm;n) + �V (km; s� 1)) : (77)

This goes quickly on a computer and the iteration is repeated until V (k; s)
is su¢ ciently close to V (k; s� 1) over the set of k 2 K:

5.1.5 An envelope result

We will later have use for the following envelope result, which implies that
we evaluate dV (k) =dk as the partial derivative holding c constant. To see
this, note that

dV (kt)

dkt
� V 0 (kt) =

@u (kt; ct)

@kt
+ �V 0 (kt+1)

@f (kt; ct)

@kt
(78)

+
dct
dkt

�
@u (kt; ct)

@ct
+ �V 0 (kt+1)

@f (kt; ct)

@ct

�
: (79)

However, the Bellman equation implies that the last term above is zero if
c is chosen optimally, either because the �rst-order condition for an interior
maximum is satis�ed @u(k;c)

@c
+�V 0 (kt+1)

@f(kt;ct)
@ct

= 0, or in the case of a corner
because dct

dkt
= 0:

This envelope result is often very useful. Consider the example

u (kt; ct) = v (ct) ; (80)

f (kt; ct) = y (kt)� ct: (81)
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The interior solution to the Bellman equation satis�es

0 = v0 (ct) + �V
0 (kt+1)

@f (kt; ct)

@ct
; (82)

! v0 (ct) = �V
0 (kt+1) : (83)

The envelope condition yields

V 0 (kt) =
@u (kt; ct)

@kt
+ �V 0 (kt+1)

@f (kt; ct)

@kt
(84)

= v0 (ct) y
0 (kt) : (85)

V 0 (kt+1) ! v0 (ct+1) y
0 (kt+1) : (86)

Using this in (82) yields the Euler equation

v0 (ct) = �v
0 (ct+1) y

0 (kt+1) : (87)

5.1.6 State Variables

We often solve the dynamic programming problem by guessing a form of the
value function. The �rst thing to determine is then which variables should
enter, i.e., which variables are the state variables. The state variables must
satisfy both following conditions:
1. To enter the value function at time they must be realized at t.
Note, however, that it sometimes may be convenient to use a conditional

expectation Et(zt+s) as a state variable. The expectation as of t is certainly
realized at t even if the stochastic variable zt+s is not realized.
2. The set of variables chosen as state variables must together give su¢ -

cient information so that the value of the program from t and onwards when
the optimal control is chosen can be calculated.8

Note, we should try to �nd the smallest such set. If, for example we have
an investment problem with several assets to invest in and without any costs
of adjusting the portfolio, total wealth may be a su¢ cient as a state variable.

5.2 Stochastic Dynamic Programming

As long as the recursive structure of the problem is intact adding a stochastic
element to the transition equation does not change the Bellman equation.

8Can you �gure out what do we need if the per period utility function in (1) were
u (ct; ct�1)?
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Consider the problem

max
fctg10

E0

1X
t=0

�tu (kt; ct) (88)

s.t. kt+1 = f (kt; ct; "t+1)8t � 0; k0 given, and (89)

kt > 0 8t. (90)

where E0 is the expectations operator, conditional on time 0 information and
we assume that ct can be chosen conditional on information about "s for all
s � t: Furthermore, let us assume that the distribution of "t is i:i:d: over
time. Then, the Bellman equation becomes

V (kt) = max
ct
(u (kt; ct) + �EtV (f (kt; ct; "t+1))) ; (91)

with a �rst-order condition

0 = uc (kt; ct) + �Et (V
0 (kt+1) fc (kt; ct; "t+1)) : (92)

Note that, in generalEt (V 0 (kt+1) fc (kt; ct; "t+1)) 6= EtV 0 (kt+1)Etfc (kt; ct; "t+1).

5.2.1 A Stochastic Consumption Example

Consider the following problem

max
fctg10

E0

1X
t=0

�t ln ct (93)

s.t. At+1 = (At � ct) (1 + ~mt+1)8t � 0; (94)

At � 0, 8t � 0, A0 given. (95)

The consumer decides how much to consume each period. The sav-
ings is placed in a risky asset with gross return (1 + ~mt+1), that is drawn
from an i.i.d. distribution with E (ln (1 + ~mt+1)) = m > �1. If, for ex-
ample the gross return is log-normal, with mean �m and variance �2 then,

E (1 + ~mt+1) = e
�m+�2

2 :
The problem is autonomous so we write the current value Bellman equa-

tion with time independent value function V

V (At) = max
ct
fln ct + �EtV ((At � ct) (1 + ~mt+1))g : (96)

The necessary �rst order condition for ct yield

1

ct
= �EtV

0
(At+1) (1 + ~mt+1) : (97)
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Now we use Merton�s result and guess that the value function is

V (At) = Y +X lnAt; (98)

for some constants Y and X. Substituting into (97), we get

1

ct
= �Et

X

At+1
(1 + ~mt+1) ; (99)

= �Et
X (1 + ~mt+1)

(At � ct) (1 + ~mt+1)
; (100)

= �
X

At � ct
; (101)

! ct =
At

1 + �X
; (102)

At � ct =
�XAt
1 + �X

: (103)

Now we have to solve for the constant X. This is done by substituting
the solutions to the �rst order conditions and the guess into the Bellman
equation,

Y +X lnAt = max
ct
fln ct + �EtV ((At � ct) (1 + ~mt+1))g (104)

= ln
At

1 + �X
+ �EtV

�
�XAt
1 + �X

(1 + ~mt+1)

�
(105)

= ln
At

1 + �X
+ �Et

�
Y +X ln

�
�XAt
1 + �X

(1 + ~mt+1)

��
(106)

= (1 + �X) lnAt � (1 + �X) ln (1 + �X) + �Y (107)

+�X ln �X + �Xm: (108)

This is satis�ed for all At i¤

X = (1 + �X) (109)

! X =
1

1� � ; (110)

Y = � 1

1� � ln
�

1

1� �

�
+ �Y + �

1

1� � ln �
1

1� � + �
m

1� � (111)

! Y = � 1

1� � ln
1

1� � +
�

(1� �)2
(m+ ln �) : (112)
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Thus,

ct =
At

1 + � 1
1��

= (1� �)At; (113)

At � ct = �At: (114)

At+1 = At� (1 + ~mt+1) ; (115)

lnAt+1 = lnAt + ln � + ln (1 + ~mt+1) (116)

Et lnAt+1 = lnAt + ln � +m: (117)

Note that since ln (1 + ~mt+1) is normally distributed, (1 + ~mt+1) > 0; for all
t; implying At > 0 for all t: If, on the other hand, (1 + ~mt+1) can be negative
with positive probability, Et ln (1 + ~mt+1) is minus in�nity implying that the
value function is ill-de�ned.

5.3 Contraction mappings

In the previous section we discussed guessing on solutions to the Bellman
equation. However, we would like to know whether there exists a solution
and whether it is unique. If the latter is not the case, it is not in principle
su¢ cient to guess and verify, since we might have other value functions that
also satisfy the Bellman equation. To prove existence and uniqueness we will
apply a contraction mapping argument.9 For this purpose, we �rst have to
de�ne some concepts.

5.3.1 Complete Metric Spaces and Cauchy Sequences

LetX be a vector space, i.e., a set on which addition and scalar multiplication
is de�ned. Also de�ne an operator d: which we can think of as measuring
the (generalized) distance between any two elements of X. We call d a norm
assumed to satisfy

1. Positivity 8x; y 2 X, d (x; y) � 0 and d (x; y) = 0) x = y:

2. Symmetry 8x; y 2 X, d (x; y) = d (y; x) :

3. Triangle inequality 8x; y; z 2 X, d (x; z) � d (x; y) + d (y; z)

Now, we call (X; d) a normed vector space or a metric space. An example
of such a space would be Rn together with the Euclidean norm d (x; y) �

9An alternative is sometimes to look for the limit lims!1 T
s (V (k; 0)), which typically

is the solution we are interested in (at least in macroeconomics).
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kx; yk. Another example is the space C(S) of continuous, bounded func-
tions where each element is a function from S � Rn ! R together with
the �sup-norm�de�ned as follows. For any two elements in C (S), i.e., any
two functions w (s) and v (s), the distance d between them is the maximal
euclidean distance, i.e.,

d (w; v) � sup
s2S

kw (s) ; v (s)k (118)

Now let us de�ne a Cauchy sequence. Intuitively, this is a sequence
of elements fxng in a space X that come closer and closer to each other,
using some particular norm. More precisely, fxng is de�ned as a sequence
of elements in X such that for all " > 0, there exist a number n, such that
for all m; p � n, d(xm; xp) < ". An example of such a sequence would be
the sequence f1; 1=2; 1=3; g which is a Cauchy sequence using the Euclidean
norm. A Cauchy sequence converges if there is an element y 2 X such that
limn!1 d(xn; y) = 0. It may, of course, be the case that the Cauchy sequence
does not converge to a point in X. An example would be if we let X be the
open interval (0; 1] and look at the Cauchy sequence f1; 1=2; 1=3; g which is
in X but converges to zero which is not in X:

5.3.2 Complete metric spaces

Now we are ready to de�ne the complete metric space. This is a metric space
in which all Cauchy sequences converge to a point in the space.

5.3.3 Contraction Mapping

Consider a metric space (X; d) and look at an operator T that maps X !
X. T is a contraction mapping by de�nition if there exists a non-negative
number � 2 [0; 1); such that for all elements x; y 2 X;

d (T (x) ; T (y)) � �d (x; y) ; (119)

where we note that � must be strictly smaller than one.
An example of contraction mapping would be a map in, say, scale 1 :

10000 put on top of a map in scale 1 : 1000 covering the same geographical
area. The norm can be the distance between the points on the map. Clearly,
(119) is satis�ed for � = 0:1.

5.3.4 The Contraction Mapping Theorem

Now we can state the very important contraction mapping theorem.

65



Result 14 Consider a complete metric space (X; d) and let T : X! X be
a contraction mapping. Then, T has one unique �xed point x� 2 X, i.e., the
solution to x = T (x) always exists and is unique. Furthermore, the sequence
x0, T (x0),T 2(x0),...,T n(x0) converges to x� for all x0 2 X.

There are theorems that can be used to show that T is a contraction
mapping.

Result 15 Let the state space S be a subset of Rn and B(S) the set of all
continuous, bounded functions from S to R. Endowed with the sup-norm,
B(S), is a complete metric space. Let T be a map that maps all elements of
B(S)! B(S). Then, T is a contraction mapping if

1. for any functions w(s); v(s) 2 B(S), the following holds; if w(s) �
v(s)8s 2 S then T (w(s)) � T (v(s))8s 2 S (monotonicity), and

2. there is a � 2 [0; 1) such that for any constant � 2 R, and any function
w (s) 2 B (S) ; T (w(s) + �) = T (w(s)) + ��. (discounting).

Usually it is straightforward to apply the previous result to show that if
we have strict discounting, the Bellman equation is a contraction mapping.
There is one major limitation which we have to live with, however, result 15
and variants of it require bounded value functions.
Let us look at an example, where we apply result 15. Consider a simple

growth model,

max
fctg10

E0

1X
t=0

�tu (ct) (120)

s.t. kt+1 = f (kt)� ct;8t � 0; k0 given, and (121)

ct; kt > 0 8t. (122)

where u is a continuous and increasing (utility) function with u (0) � umin >
�1 and 0 � � < 1: To use the theorems we need to make some assumptions.
First, we need boundedness. For this purpose, we assume

f (0) = 0; (123)

f 0 (k) � 08k � 0; (124)

9�k > 0; such that f (k) � k8k � �k: (125)

Now, de�ne S = [0; �k] and note that if k0 is in S, so is all admissible kt.
Then, u (ct) is bounded since umin � u (c) � u

�
�k
�
implying that any value
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function must satisfy umin
1�� � V (k) � u(�k)

1�� : By restricting the state space
S = [0; �k], we can therefore restrict our search for value functions that are
bounded on our state space.
Now, let us establish that the following mapping is a contraction:

V (k) = max
c�0

u (c) + �V (f (k)� c)) � T (V (k)) (126)

Regarding condition 1, we need for any two bounded functions v (k) ; w (k) ; k 2
S; :

v (k) � w (k)8k ) T (v (k)) � T (w (k))8k: (127)

which is satis�ed. To see this, de�ne

c� = argmax
c
u (c) + �w (f (k)� c) (128)

then,

T (v (k)) = max
c
u (c) + �v (f (k)� c) � u (c�) + �v (f (k)� c�) (129)

� u (c�) + �w (f (k)� c�) = T (w (k)) : (130)

Regarding condition 2, we note

T (v (k) + �) = max
c�0

u (c) + � (v (f (k � c)) + �) (131)

= max
c�0

u (c) + �v (f (k � c)) + �� (132)

= T (v (k)) + ��; (133)

so the second condition is satis�ed too. Thus, the Bellman equation is a
contraction mapping and always has one and one only solution, V (k) :
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6 Dynamic Optimization in Continuous Time

6.1 Dynamic programming in continuous time

Consider the problem

max
k(t)T0 ;c(t)

T
0

Z T

0

e�rtu (k; c; t) dt (1)

s:t: _k = f (k; c; t) (2)

k (0) = k; (3)

with

k (T ) = �k (case 1), or (4)

k (T ) free (case 2), or (5)

k (T ) � �k (case 3). (6)

Thinking of the integral in the maximand as a sum of rectangles with
base dt and height e�rtu (k; c; t), we can approximate the problem with a
discrete time problem. Noting that for a small time interval dt, k (t+ dt) =
k (t) + f (k; c; t) dt; we can write the current value Bellman equation

V (k; t) = max
c

�
u (k; c; t) dt+ e�rdtV (k + f (k; c; t) dt; t+ dt)

	
: (7)

We can then make Taylor approximations;

V (k; t) = max
c
fu (k; c; t) dt (8)

+(1� rdt) (V (k; t) + Vk (k; t) f (k; c; t) dt+ Vt (k; t) dt) g (9)

Subtracting (1� rdt)V (k; t) from both sides, dividing by dt and then
letting dt go to zero yields,

rV (k; t) = max
c
fu (k; c; t) + Vk (k; t) f (k; c; t) + Vt (k; t)g (10)

= max
c

�
u (k; c; t) +

dV (k; t)

dt

�
; (11)

where we note that dV (k; t) =dt is the total time derivative of the value
function. Sometimes, this equation is referred to as an asset pricing equation
�and interpreted as follows; if an asset is correctly valued (not providing
arbitrage opportunities) the opportunity cost of holding it (the LHS of (10))
equals the (optimal) sum of the immediate pay-o¤ or dividend (the �rst term
of (11)) and the capital gain (the second term of (11)).
Sometimes we can use the guess and verify technique to solve for the

value function if the problem is autonomous. An alternative is to use Optimal
Control and Pontryagin�s maximum principle.
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6.2 Optimal Control

Consider the problem in (1) with the continuous time Bellman equation (10).
Noting that since the term Vt (k; t) is independent of c; we can rewrite (10)

rV (k; t)� Vt (k; t) = max
c
fu (k; c; t) + Vk (k; t) f (k; c; t)g (12)

De�ning the co-state or current shadow value variable as the derivative
of the value function w.r.t. k; along its optimal path k�,

� (t) � Vk (k�; t) : (13)

We see that a necessary condition for c� (t) to be optimal is that it is
given by

c� (t) = argmax
c
fu (k; c; t) + � (t) f (k; c; t)g : (14)

Now, we need to pin down � (t) : For this purpose we analyze how � devel-
ops over time by deriving a di¤erential equation for � (t) :Taking derivatives
w.r.t. k of the identity (12), we get

rVk (k; t)� Vkt (k; t) = uk (k; c�; t) + Vkk (k; t) f (k; c�; t) (15)

+Vk (k; t) fk (k; c
�; t) ; (16)

r� (t)�
�
Vtk (k; t) + Vkk (k; t) _k

�
= uk (k; c

�; t) + � (t) fk (k; c
�; t) ; (17)

r� (t)� _� (t) = uk (k; c
�; t) + � (t) fk (k; c

�; t) ; (18)

where in second equation, we changed the order of di¤entiation, using the
fact that @

@k
@V (k;t)
@t

= @
@t
@V (k;t)
@k

:
Equation (14) and (18) form the basis of Pontryagin�s maximum principle.

According to this, we derive necessary (and sometimes su¢ cient) conditions
for an optimal control. We do this without explicitly solving for the value
function. We �rst de�ne the current value Hamiltoninan. This is the sum
of the instantaneous payo¤ and the product of costate(s) and the function
determining the law-of-motion of the state variable;

H (k; c; �; t)�u (k; c; t) + � (t) f (k; c; t) : (19)

Note that the Hamiltonian has the same interpretation as the RHS of
the Bellman equation without the max-operator. In words, it is the sum
of the �ow of current pay-o¤ and the generation of future pay-o¤. In the
Bellman equation, we use the value function to measure future payo¤s while
the Hamiltonian uses the shadow-value �:
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According to Pontryagin�s maximum principle, the optimal control c� (t)
maximizes the Hamiltonian at each instant, the co-state (or shadow value)
satis�es the di¤erential equation, r� (t) � _� (t) = Hk (k; c; �; t). These nec-
essary conditions will provide di¤erential equations which we need to solve.
Typically we have one initial condition for each state variable. But we need
more information to solve the system since we also have the control vari-
able(s). In case (1) of (4), we have the necessary additional information. In
case (2), it must be that the shadow value of the state variable approach zero
as t ! T: This is called, the transversality condition. In case (3), either the
inequality is slack, in which case � (T ) = 0; or it binds, giving the necessary
additional info in both cases. We can the summarize:

Result 16 According to the Pontryagin�s maximum principle
1. An optimal control c� (t) ; satis�es

c� (t) = argmax
c
H (k; c; �; t) ; (20)

2. where the current co-state or shadow value � (t) , is a continuous function
of time, satisfying the di¤erential equation.

r� (t)� _� (t) = Hk (k; c; �; t) ; (21)

except at points in time where c is discontinuous and with
3. end-condition(s) provided by

k (T ) = �k (case 1) or (22)

� (T ) = 0 if k (T ) is free (case 2), or (23)

� (T ) � 0; and � (T )
�
k (T )� �k

�
= 0 if k (T ) � �k (case (3). (24)

In addition, the path for k (t) must satisfy the initial condition, k (0) = k,
and _k (t) = H� (k; c; �; t) = f (k; c; t) :

6.2.1 The consumption problem

As an example, consider the problem standard consumption-savings (Ram-
sey) problem

max
k(t)T0 ;c(t)

T
0

Z T

0

e�rtu (c) dt (25)

s:t: _k = f (k)� c (26)

k (0) = k; (27)

k (T ) � 0; (28)
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with u and f increasing and concave. The current value Hamiltonian is

H (k; c; �; t) = u (c) + � (t) (f (k)� c) : (29)

Thus, c� (t) = argmaxc u (c) + � (t) (f (k)� c) which is interior, implying

Hc (k; c; �; t) = 0: (30)

! u0 (c�) = �: (31)

Furthermore, from the second condition

Hk (k; c; �; t) = �f
0 (k) = r�� _�: (32)

Taking time-derivatives of u0 (c�) = � and substituting into (32) we get

u00 (c�) _c� = _�; (33)

u0 (c�) f 0 (k) = ru0 (c�)� u00 (c�) _c�; (34)

! _c� =
u0 (c�)

�u00 (c�) (f
0 (k)� r) ; (35)

which is the Euler equation we have seen before. To analyze the behavior of
this system, we can use the phase-diagram as in section 3.5.
To get a closed form solution, i.e., an expression for the endogenous vari-

ables in terms of only the exogenous ones, we must specify the utility and
production functions. Considering �rst the utility functions, we have two
important special cases. First, CARA utility,

u (c) = �e
�c


; (36)

! u0 (c) = e�c; u00 (c) = �e�c (37)

in which case we get

_c� =
1


(f 0 (k)� r) ; (38)

i.e., consumption increase is a linear function in the di¤erence between the
marginal return on savings and the subjective discount rate. The other case
is CRRA,

u (c) =
c1��

1�� ; (39)

! u0 (c) = c��; u00 (c) = ��c���1; (40)

71



yielding

_c� =
c��

�c���1
(f 0 (k)� r) = c

�
(f 0 (k)� r) (41)

_c�

c
=

1

�
(f 0 (k)� r) ; (42)

i.e., the consumption growth rate is a linear function in f 0 (k)�r: The sensitiv-
ity is given by 1=�, which we call the intertemporal elasticity of substitution.
Here, we also have that � is the constant of relative risk aversion.
What about the transversality condition? In this case, we know u0 (c� (T )) =

� (T ) : So since utility in the examples is unbounded, i.e., u0 (c) > 0 for all
�nite c; � (T ) cannot be 0, instead k (T ) is zero. In other words, whenever
consumption is valuable at T , the lower bound on k should bind and nothing
should be left.
Let us complete the example by assuming, for simplicity, a linear (Romer

type) production function f (k) = Ak. In the CRRA case, we get the linear
system

_c� =
A� r
�

c (43)

_k = �c+ Ak (44)�
_c�

_k

�
=

�
A�r
�

0
�1 A

� �
c�

k

�
: (45)

This system has roots A and A�r
�
and the matrix of eigenvectors is�

0 r+A(��1)
�

1 1

�
� B�1: (46)

Consequently, the solution is of the form�
c� (t)
k (t)

�
= B�1

�
eAt 0

0 e
A�r
�
t

� �
�1
�2

�
(47)

=

"
0 r+A(��1)

�
e
A�r
�
t

eAt e
A�r
�
t

# �
�1
�2

�
; (48)

where �1 and �2 are two integration constants. We solve for the latter by
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using k (0) = k and k (T ) = 0:

k (0) = k =
�
1 1

� � �1
�2

�
(49)

= �1 + �2 (50)

k (T ) = 0 =
h
eT e

A�r
�
T
i � �1

�2

�
(51)

! �1 =
e
A�r��

�
T

e
A�r��

�
T � 1

k; �2 =
1

1� eA�r���
T
k: (52)

We can now, for example, evaluate

c� (t) =
r + A (� � 1)

�
e
A�r
�
t 1

1� eA�r���
T
k; (53)

c� (0) =
r + A (� � 1)

�

1

1� eA�r���
T
k: (54)

6.3 Su¢ ciency

Assume that f and u are concave in k; c and � � 0. This implies that the
Hamiltonian is concave in k; c. Then, Pontryagin�s necessary conditions (20)
and (21) and (22), or (23) or (24) are su¢ cient.

6.4 In�nite horizon

Consider the in�nite horizon problem

max
c(t)10

Z 1

0

e�rtu (k; c; t) dt (55)

s:t: _k = f (k; c; t) (56)

k (0) = k; (57)

Pontryagin�s conditions (20) and (21) are necessary also in the in�nite
horizon case, provided, of course, that there is a well de�ned solution. If there
is a binding restriction on the state variable of the type limT!1 k (T ) = �k,
this can help us pin down the solution. The �nite horizon transversality
conditions can, however, not immediately be used in the in�nite horizon
case. Suppose the maximized Hamiltonian is concave in k for every t, then
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the conditions (20) and (21) plus the in�nite horizon transversality conditions

lim
T!1

e�rT� (T ) k (T ) = 0; and (58)

lim
T!1

e�rT� (T ) � 0; (59)

provide a su¢ cient set of conditions for optimality (see de la Fuente, 1999,
p 577). Often, the Hamiltonian is concave in k; c together. This is su¢ cient
for the maximized Hamiltonian to be concave in k:
Sometimes a so called No-Ponzi condition helps us to make sure that

the transversality conditions are satis�ed. Suppose, for example, the pay-
o¤ u (k; c; t) = u (c), that k represents debt of the agent and for simplicity
that f (k; c; t) = c + �k � w, so debt increases by the di¤erence between
consumption plus interest payments �k and the wage w. It is reasonable to
assume that creditors demand to be repaid in a present value sense � the
discounted value of future repayment should always be at least as large as
debt. This is the No-Ponzi condition. When in addition, the agent prefers
to pay back no more than he ows, the implication is.

lim
T!1

e��Tk (T ) = 0: (60)

To see this, solve
_k (t)� �k (t) = c (t)� w (t) (61)

giving

e��t
�
_k (t)� �k (t)

�
= e��t (c (t)� w (t)) (62)

e��tk (t) =

Z t

0

�
e��s (c (t)� w (t))

�
ds+ k (0) (63)

lim
T!1

e��Tk (T ) =

Z 1

0

�
e��s (c (t)� w (t))

�
ds+ k (0) (64)

So, the No-Ponzi requirement is that if the PDV of "mortgage" repayments is
no smaller than initial debt, i.e., �

R1
0
(e��s (c (t)� w (t))) ds k (0) � k (0) ;

then limT!1 e
��Tk (T ) � 0: Clearly, when marginal utility is strictly positive,

the individual would never want to satisfy this with inequality, since he could
then increase consumption. Therefore, limT!1 e

��Tk (T ) = 0:
The second necessary condition in (21) is now

� (�� r)� (t) = _� (t) (65)

� (t) = � (0) e�(��r)t: (66)
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So provided marginal utility is positive at t = 0, (59) is satis�ed. Further-
more,

lim
T!1

e�rT� (T ) k (T ) = � (0) lim
T!1

e�rT e�(��r)Tk (T ) (67)

= � (0) lim
T!1

e��Tk (T ) (68)

= 0: (69)

where the last equality is the No-Ponzi condition.
Sometimes, the su¢ cient conditions allow us to identify the optimal con-

trol as the stable manifold (saddle-path) leading to a saddle-point stable
steady state. Consider again the problem

max
c(t)10

Z 1

0

e�rtu (c) dt (70)

s.t. _k = f (k)� c; k (0) = k; (71)

which we graphically analyzed in section 3.5 showing the existence of saddle-
path and a steady state with

f 0 (kss) = r (72)

css = f (kss) (73)

Restating the current value Hamiltonian

H (k; c; �; t) = u (c) + � (t) (f (k)� c) ; (74)

we note that if both u (c) and f (k) are concave, and � (t) � 0; H (k; c; �; t) is
concave in k; c so the conditions for using the su¢ ciency result are satis�ed.
In addition to (41), (42), and k (0) = k, we thus only need to verify that (58)
and (59) are satis�ed. This is straightforward,

lim
T!1

e�rT� (T ) = lim
T!1

e�rTu0 (css) = 0; (75)

lim
T!1

e�rT� (T ) k (T ) = lim
T!1

e�rTu0 (css) kss = 0: (76)

6.5 Present value Hamiltonian

Sometimes, it is convenient to de�ne the present value Hamiltonian, i.e.,
expressing everything in values as seen from time 0. In problem (1), the
present value Hamiltonian is given by

H (k; c; �; t) = e�rtu (k; c; t) + �f (k; c; t) ; (77)
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where � (t) is the present shadow value of the state variable. In this case,
the necessary conditions for optimality are

c� (t) = argmax
c
H (k; c; �; t) (78)

� _� (t) = Hk (k; c; �; t) (79)
_k = H� (k; c; �; t) (80)

In the �nite horizon case, the transversality conditions are the same in
terms of � (T ) and � (T ) :In the in�nite horizon case, we note that

� (T ) = e�rT� (T ) ; (81)

so the conditions (58) and (59) become

lim
T!1

� (T ) k (T ) = 0; and (82)

lim
T!1

� (T ) � 0: (83)

Note also that Michel (Econometrica, July 1982) states

lim
limT!1

H (k; c; �; t) = 0:

6.6 Many state variables and controls

Having several state variables and controls pose no principle problem. Nei-
ther does pointwise discontinuities in the control variable. To generalize,
suppose we have n state variables and n controls. An optimal control maxi-
mizes the Hamiltonian over all available controls c

c� (t) = argmax
c
H (k; c;�; t) � u (k; c; t) +

nX
i=1

�ifi (k; c; t) : (84)

where �i is the shadow value associated with the state variable ki. Each �i (t)
is continuous and satis�es the di¤erential equation

r�i (t)� _�i (t) =
@

@ki
H (k; c;�; t) ; (85)

except when c is discontinuous. For the transversality conditions, we have

ki (T ) = �ki case (1), or (86)

�i (T ) = 0 case (2), or (87)

�i (T ) � 0; and �i (T )
�
ki (T )� �ki

�
= 0 case (3), (88)

for end-conditions for state variable i belonging to case 1, 2 or 3.
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7 Some numerical methods

7.1 Numerical solution to Bellman equations

When we cannot solve the Bellman equation analytically, there are several
methods to approximate a solution numerically. One of the most straight-
forward methods when the problem is autonomous, is to discretize the state
space and iterate on the Bellman equation until it converges. When the Bell-
man equation is a contraction mapping, strong results make sure that this
procedure converges to the correct value function.
When we discretize the state space, we restrict the state variable to take

values from a �nite set

kt 2
�
k1; k2; :::kn

�
� K (1)

where the superscripts index the elements of K:We then solve for c from the
law-of-motion for k

kt+1 = f (kt; ct) (2)

=) ct = �f (kt; kt+1) (3)

We can then write the Bellman equation for the discretized problem as

V (kt) = max
kt+12K

u
�
kt; �f (kt; kt+1)

�
+ �V (kt+1) : (4)

As you see, this is a Bellman for a constrained problem, i.e., the control
variable is constrained relative to the case when kt+1 is continuous. Two
things should be noted; First, the Bellman equation is the true Bellman
equation of the constrained problem and previous results hold, in particular
the contraction mapping theorems apply. Second, how important the con-
straint implied by the discretization depends on how �ne the grid is. Many
(few) elements of K with small (large) distances between them, imply that
the constraint is weak (severe).
Denoting an arbitrary initial value function by V0 (kt) ; being n numbers,

we update this value function according to

V1 (kt) = max
kt+12K

u
�
kt; �f (kt; kt+1)

�
+ �V0 (kt+1) (5)

giving V1 (kt) ; being a new set of n numbers. We then iterate on the Bellman
equation

Vs+1 (kt) = max
kt+12K

u
�
kt; �f (kt; kt+1)

�
+ �Vs (kt+1) (6)
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until Vs+1 (kt) � Vs (kt) : For each of the n values of kt, we check u
�
kt; �f (kt; kt+1)

�
+

�V (kt+1) for all n values of kt+1 and choose the kt+1 that gives the highest
value, giving Vs+1 (kt). Therefore, each iteration requires n2 evaluations when
the state variable is unidimensional.10

Lets consider a simple example.

max
fkt+1;ctg1t

1X
t=0

�t ln (ct) (7)

s.t. kt+1 = f (kt; ct) � k�t + (1� �) kt � ct (8)

kt � 08t (9)

k0 = k (10)

First, we solve for

ct = �f (kt; kt+1) = k
�
t + (1� �) kt � kt+1: (11)

Then, we note that kt 2
h
0; �

1
��1

i
=) kt+1 2

h
0; �

1
��1

i
, implying that

value function is bounded. If also � < 1; the Bellman equation

V (kt) = max
ct
ln (k�t + (1� �) kt � kt+1) + �V (kt+1) (12)

is a contraction mapping.
Let us parametrize, setting � = 0:9, � = :2 and � = 1=2 =) �

1
��1 = 25

and discretize the state space by requiring

kt 2 [5; 10; 15; 20; 25] � K 8t: (13)

Now set an initial value function, for example

V0 (k) = ln k 8k:

This is then updated in the following way. For each possible kt; kt+1 we
calculate the left hand side of the Bellman equation, and solve the maximiza-
tion problem. So, for kt = 5; and all kt+1 2 K we have

ln (5� + (1� �) 5� 5) + :9 ln 5 = 1:66

ln (5� + (1� �) 5� 10) + :9 ln 10 = �1
ln (5� + (1� �) 5� 15) + :9 ln 15 = �1
ln (5� + (1� �) 5� 20) + :9 ln 20 = �1
ln (5� + (1� �) 5� 25) + :9 ln 25 = �1

10When the state variable is higher of dimensionality, this method quickly becomes
computationally too burdensome.
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Implying that the updated value function for kt = 5 is

V1 (5) = 1:66:

For kt = 10;

ln (10� + (1� �) 10� 5) + :9 ln 5 = 3:27

ln (10� + (1� �) 10� 10) + :9 ln 10 = 2:22

ln (10� + (1� �) 10� 15) + :9 ln 15 = �1
ln (10� + (1� �) 10� 20) + :9 ln 20 = �1
ln (10� + (1� �) 10� 25) + :9 ln 25 = �1

implying
V1 (10) = 3:27

In the same way, for kt = 15

ln (15� + (1� �) 15� 5) + :9 ln 5 = 3:83

ln (15� + (1� �) 15� 10) + :9 ln 10 = 3:84

ln (15� + (1� �) 15� 15) + :9 ln 15 = 2:30

ln (15� + (1� �) 15� 20) + :9 ln 20 = �1
ln (15� + (1� �) 15� 5) + :9 ln 25 = �1

V1 (15) = 3:84

Doing this also for kt = 20 and kt = 25 completes the �rst iteration. Then,
we repeat the iterations until we think the process has converged su¢ ciently,

7.2 Band Matrix Methods for di¤erential equations

Assume we want to solve the di¤erential equation

y00 (t) + ay0 (t) + by (t) = g (t) (14)

over some interval, with initial conditions given. If we want to solve this
numerically, we �rst have to get rid of the abstract in�nitely small di¤erences
called di¤erentials. We approximate these with �nite size forward di¤erences
such that

y0 (t) � y (t+�t)� y (t)
�t

; (15)

y0 (t) �
y(t+�t)�y(t)

�t
� y(t)�y(t��t)

�t

�t
(16)

=
y (t+�t)� 2y (t) + y (t��t)

�t2
(17)
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Using this we can solve the equation for a �nite set of values in the
following way. Say we want to solve the equation in the interval t 2 [p; q]
and we know y00 (0) = c1 and y0 (0) = c2: We divide the interval for t into n
equal parts and use the following notation

tk = p+
k (q � p)

n
; (18)

tk � tk�1 =
q � p
n

� �t; (19)

y (tk) � yk: (20)

This gives us the following equations

(y�1 � 2y0 + y1)
�t2

= c1 (21)

(�y0 + y1)
�t

= c2 (22)

(y�1 � 2y0 + y1)
�t2

+ a
�y0 + y1
�t

+ by0 = g (t0) (23)

(y0 � 2y1 + y2)
�t2

+ a
�y1 + y2
�t

+ by1 = g (t1) (24)

: (25)

: (26)
(yn�1 � 2yn + yn+1)

�t2
+ a

�yn + yn+1
�t

+ byn = g (tn) : (27)

This provides n + 3 linear equations for the n + 3 unknown y. Writing
this as a system we have

A

26666664
y�1
y0
y1
:
yn
yn+1

37777775 =

26666664
c1
c2
g (t0)
g (t1)
:

g (tn)

37777775 (28)

26666664
y�1
y0
y1
:
yn
yn+1

37777775 = A�1

26666664
c1
c2
g (t0)
g (t1)
:

g (tn)

37777775 ; (29)
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with (setting n = 3)

A � (30)26666666666664

�t�2 �2�t�2 �t�2 0 0 0

0 ��t�1 �t�1 0 0 0

�t�2 �2�t�2�a�t�1+b �t�2+a�t�1 0 0 0

0 �t�2 �2�t�2�a�t�1+b �t�2+a�t�1 0 0

0 0 �t�2 �2�t�2�a�t�1+b �t�2+a�t�1 0

0 0 : �t�2 �2�t�2�a�t�1+b �t�2+a�t�1

37777777777775
To get any accuracy, we should of course set n much larger than 3: As we

see, the matrix A contains many zeros, with a band of non-zeros around the
diagonal. Due to this feature, it is easy for the computer to invert it also if
n is in the order of hundreds.

7.3 Newton-Raphson

Suppose we are looking for an optimum of the real valued function f (x) ;x 2 Rn

where f is twice di¤erentiable. A standard way to do this numerically is to
apply the Newton-Raphson algorithm. If the optimum is interior, it satis-
�es the necessary �rst order conditions that the gradient is zero, i.e., at the
optimum, denoted x�,

Df (x) = 0: (31)

Now apply a �rst order linear approximation to the gradient from some
initial point x0

0 = Df (x�) � Df (x0) +D2f (x0) (x
� � x0) ; (32)

where D2f (x0) is the Hessian matrix of second derivatives of f:
Provided the Hessian is invertible, we can get an approximation to x�;

x� � x0 �
�
D2f (x0)

��1
Df (x0) : (33)

From this we can construct a search algorithm that under some circum-
stances makes better and better approximations

xs+1 � xs �
�
D2f (xs)

��1
Df (xs) : (34)

If we don�t have analytic solutions to the gradient and Hessian we can
use numerical approximations, for example the forward di¤erence method;
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For a small number ", we have,

@f (x)

@x1
=

f

�
x+

�
"
0

��
� f (x)

"
(35)

@f 2 (x)

@x21
=

f

�
x+

�
"
0

��
� 2f (x) + f

�
x�
�
"
0

��
"2

; (36)

@f 2 (x)

@x2@x1
=

@f

0BBB@x+
26664
0
"
0

37775
1CCCA

@x1
� @f(x)

@x1

"
(37)

=

f

0@x+
24 "
"
0

351A� f
0@24 0"

0

351A� f
0@x+

24 "
0
0

351A+ f (x)
"2

:(38)

One should be very careful with this method since it can only �nd local
optima in the case when f is not globally concave. In well-behaved problems,
it is however, easily programmed and fairly quick.
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8 Note on constant hazard models

Consider as an example a pool of unemployed, with measure (size) at time t
given by x(t): Suppose also that there is an out�ow of people from the unem-
ployment pool (we are for now disregarding the in�ow of new unemployed).
The out�ow is determined by an assumption that there is a constant prob-
ability per unit of time, denoted h to get hired. Using this we can derive a
law-of-motion for x (t). Over a small (in�nitesimal) interval of time dt, we
have

x (t+ dt) = x (t) (1� hdt) (1)

x (t+ dt)� x (t) = �x (t)hdt (2)

lim
dt!0

x (t+ dt)� x (t)
dt

� _x (t) = �hx (t) : (3)

This is a simple di¤erential equation with a solution

x (t) = x (0) e�ht: (4)

Now, consider an individual who is unemployed at time 0 and the random
variable s denote the time she will stay unemployed. Let us now derive
the probability density function f (s) and let F (s) denote the cumulative
distribution function, i.e., F (s) is the probability the unemployment spell is
no longer than s: Clearly,

F (s) =

Z s

0

f (t) dt: (5)

From (4) we know that at time s, a share

x (t)

x (0)
= e�hs; (6)

remains unemployed and since hiring is completely random,

1� x (t)

x (0)
= 1� e�hs = F (s) ; (7)

and consequently
f (s) = he�hs: (8)

Let us also verify that the probability of �nding a job per unit of time,
conditional on not having found it stays constant. This probability is

f (t)

1� F (t) =
he�ht

e�ht
= h: (9)
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We can now compute the average spell length asZ 1

0

sf (s) ds =

Z 1

0

she�hsds: (10)

Using the formula for integration by parts,Z 1

0

she�hsds =
�
�se�hs

�1
0
�
Z 1

0

�e�hsds (11)

= 0� 0�
�
e�hs

h

�1
0

=
1

h
: (12)

Similarly, we can compute the median length m, i.e., solving F (m) = 1=2
from

1=2 = 1� e�hm (13)

! e�hm = 1=2 (14)

�hm = � ln 2 (15)

m =
ln 2

h
� :69

h
(16)

This is sometimes called the rule of 69; expressing h in percent per unit
of time. The half-life is found by dividing 69 by h: For example, if the
probability of �nding job is 5% per week. It takes 69=5 � 14 weeks before
half the pool of unemployed have found jobs and the average unemployment
spell is 1=0:05 = 20 weeks.
Another example; it is often found that di¤erences in GDP between coun-

tries (after controlling for di¤erences is savings and schooling) is closing by
3% per year. Then, half the di¤erence is left after 69=3 = 23. The rule of 69
also works when something is growing. If a bank account yields 4% return
per year, it takes 69=4 � 17 years for it to double.

9 T-mappings

Instead of using time as an argument of the value function, let�s use time
subscripts. We can then write the Bellman equation as

Vt (kt) =

�
maxct (u (kt; ct) + �Vt+1 (kt+1))

s:t:kt+1 = f (kt; ct)

Now, let us de�ne an operator that maps next period value functions; Vt+1 :
K ! R; (where K is the state space, i.e., the set of possible values for the
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state variable), into functions that provides the current value associated with
all kt in the state space. Thus, the operator, which we will call,T; maps ele-
ments of the space of value functions, call that space C; back into the same
space, i.e., T : C ! C.11

Formally, we de�ne the T mapping as

TVt+1 : C ! C �
�
maxct (u (kt; ct) + �Vt+1 (kt+1))

s:t:kt+1 = f (kt; ct)
:

When we want to indicate that the mapped function, TVt+1; is a function of,
e.g., kt;we append (kt) ;

TVt+1 = TVt+1 (kt) :

Note that while Vt+1 is a function of kt+1, TVt+1 is a function of kt:
Let us take an example. Suppose u (kt; ct) = ln ct and f (kt; ct) = kt � ct

8t: Let�s us now see what the T operator does. Take a particular element in
C; for example ln k : R+ ! R: So here the state space K = R+: Now,

T ln kt =

�
maxct (ln ct + � (ln kt+1))

s:t:kt+1 = kt � ct

The �rst order condition is

1

ct
=

�

kt � ct
! ct =

kt
1 + �

thus,

T ln kt = ln
kt
1 + �

+ �

�
ln

�
kt �

kt
1 + �

��
= ((1 + �) ln kt + � ln � � (1 + �) ln (1 + �))

which is another function R+ ! R: So, we see that the T maps functions
into (potentially) other functions, concluding the example.
Using the T operator, the Bellman equation in period t can be written

Vt = TVt+1;

or, equivalently,
Vt (kt) = TVt+1 (kt) :

Furthemore, in the next period, the next period�s Bellman equation is

Vt+1 = TVt+2:

11Later on, we will make assumptions such that we can further restrict the space of
possible valute functions.
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Thus,
Vt = TVt+1 = T

2Vt+2:

The meaning of T 2Vt+2 in words is; give me (I am T 2) a value function
that applies in period t+2 (you don�t need to say anything about what kt+2
is going to be), and I give you a function that tells you the value in period t
associated with all values of kt in the state space. Formally;

T 2Vt+2 =

�
maxct (u (kt; ct) + � (TVt+2 (kt+1))))

s:t:kt+1 = f (kt; ct)

=

�
maxct

�
u (kt; ct) + �

�
maxct+1 (u (kt+1; ct+1) + �Vt+2 (kt+2))

��
s:t:kt+1 = f (kt; ct) ; kt+2 = f (kt+1; ct+1)

:

Now, suppose in the time autonomuous case that we can �nd a limiting
function

V (kt) � lim
s!1

T sVt+s (kt)

then, as shown in the lecture notes, this function satis�es the Bellman equa-
tion

V (kt) = TV (kt)

i.e., it is a �xed point of the T operator. This means that in the the space
C, V is an elements such that T maps back onto the same element. If T is
a contraction mapping on C, this element exists and is unique.
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