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Systems of di�erential equations

1. Systems of linear equations with constant coe�cients

Consider a system of two linear equations with constant coe�cients:

x0
1
(t) = a11x1(t) + a12x2(t) + b1

x0
2
(x) = a21x1(t) + a22x2(t) + b2

This system may be written more compactly using matrix notation:

x0(t) = Ax(t) + b (1:1)

where

x(t) =

�
x1(t)

x2(t)

�
; A =

�
a11 a12
a21 a12

�
and b =

�
b1
b2

�

We assume that the determinant �
def

= det(A) 6= 0. It is then easy to see that a

steady state solution|i.e., a solution independent of t|to (1.1) is x� = �A�1b:

For any x(t) we can de�ne z(t) by x(t) = z(t) + x�; substituting into (1.1)

yields

z0(t) = A(z(t) + x�) + b = Az(t) �A(A�1b) + b = Az(t)

i.e., x(t) is a solution to (1.1) if and only if x(t) = z(t) + x�; where x� = �A�1b

and z(t) is a solution to the homogeneous equation

z(t) = Az(t) (1:2)

We now proceed to �nd the general solution.

Theorem: Let �(t) =

�
�11(t) �12(t)

�21(t) �22(t)

�
be a solution to

�0(t) = A�(t) (1:3)

where

det �(t) =

�����11(t) �12(t)

�21(t) �22(t)

���� 6= 0 for all t:

Then the general solution to equation (1.2) is z(t) = �(t)c; where c is a constant�
c1
c2

�
: In other words, the general solution to equation (1.1) is

x(t) = �
1
c1 + �

2
c2 �A

�1b

where �
j
is the j:th column of � and c1; c2 are arbitrary constants.
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Proof: For any z(t), de�ne c(t) by z(t) = �(t)c(t): This is possible, since det�(t) 6=

0: Substituting into (1.1) gives

�0(t)c(t) + �(t)c0(t) = A�(t)c(t)

()

A�(t)c(t) + �(t)c0(t) = A�(t)c(t)

()

�(t)c0(t) = 0 () c0(t) = 0 () c(t) = c = constant

so we have z(t) = �(t)c; Q.E.D.

2. Finding �(t)

Note that �(t) is a solution to (1.3) if and only if each of the two columns �
1
(t);

�
2
(t) are solutions to (1.1). Let us try to �nd a solution to (1.1) of the form

�(t) = vert for some constant column matrix v and real number r. We get

v rert = Avert () Av = rv

i.e., we have found a solution i�. v is an eigenvector of A and r is the corresponding

eigenvalue. The procedure is thus: if the characteristic equation r2�TrA+detA =

0 has two distinct real roots r1; r2; and v
1
; v

2
are the corresponding eigenvec-

tors, then we have two solutions �
j
(t) = vje

rjt: Since eigenvectors corresponding

to di�erent eigenvalues are linearly independent, it follows that the determinant

det(�
1
; �

2
) 6= 0: Thus

Theorem: If the characteristic equation r2 � TrA + detA = 0 has two distinct

real roots r1; r2; and v
1
; v

2
are the corresponding eigenvectors, then the general

solution to equation (1.1) is (assuming detA 6= 0) :

x(t) = c1e
r1t v

1
+ c2e

r2t v
2
�A�1b

where c1 and c2 are arbitrary constants.

If the characteristic equation has a double root, or complex roots, we state the

general solution to equation (1.1) without proof:
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Theorem: If the characteristic equation r2 �TrA+detA = 0 has a double root

r; then the general solution of (1.1) is

x(t) = v
1
er1t + v

2
ter2t �A�1b

where

v
1
is an arbitrary column matrix and v

2
= (A� Ir)v

1

If the characteristic equation has complex roots � � i�; then the general solution

is

x(t) = v
1
e�t cos�t+ v

2
e�t sin�t�A�1b

where

v
1
is an arbitrary column matrix and v

2
=

1

�
(A � I�)v

1

3. Characterization of solutions.

The solutions can be depicted in a phase diagram where the curves (x1(t); x2(t)) are

plotted in an x1; x2 diagram. The solution curves are called trajectories. We can

distinguish between a number of cases. Let T = TrA and � = detA: If 4� > T 2;

then the characteristic equation features complex roots, and any trajectory is a

stable spiral if � < 0: In this case the trajectory spiral in towards the stationary

solution x�. If instead � > 0 we have unstable spirals; any trajectory will spiral out

from x�: In either case, the spirals will turn in a positive|i.e., counter clockwise|

direction if a21 > 0 and in negative|clockwise|direction if a21 < 0: If � happens

to be exactly equal to zero, then the trajectories will go around the stationary

solution x� in ellipses; we have periodic solutions.

If the characteristic equation has distinct real roots, which is the case if 4� <

T 2; then there are three cases depending on the location of the roots. De�ne

 (r) = r2 � rT + �: This function is a parabola with it's minimum located at

r = T=2:

(1.1) � > 0 and T < 0: In this case  (r) has it's minimum point T=2 to the left

of r = 0 where  (T=2) = �T 2=4 + � < 0 and  (0) = � > 0: It follows

that both roots r1; r2 are negative. The phase portrait is a stable node. All

trajectories will converge towards the stationary solution x� and will become

tangent to the eigenvector corresponding to the eigenvalue closest to zero as

t!1:

(1.2) � > 0 and T > 0: In this case  (r) has it's minimum point T=2 to the right

of r = 0 where  (T=2) = �T 2=4 + � < 0 and  (0) = � > 0: It follows

that both roots r1; r2 are positive. The phase portrait is an unstable node.

All trajectories will diverge away from the stationary solution x� and will

become tangent to the eigenvector corresponding to the eigenvalue closest to

zero as t! �1:

(1.3) � < 0: In this case  (0) = � < 0; it follows that one root is negative and

the other positive; say r1 < 0 and r2 > 0: The phase portrait is a saddle
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point. Almost all trajectories will diverge away from the stationary solution

x�; the only exception are the solutions x(t) = c1e
r1t v

1
+ c2e

r2t v
2
� A�1b

where c2 = 0. These solutions x(t) = c1e
r1t v

1
�A�1b are called saddle paths

and play an important rule in many macro economic models.

Since 2� = T we have in summary:

T < 0; 4� > T 2; a21

n
> 0

< 0
stable spiral

n
counter-clockwise

clockwise

T > 0; 4� > T 2; a21

n
> 0

< 0
unstable spiral

n
counter-clockwise

clockwise

T > 0; 0 < 4� < T 2 unstable node

T < 0; 0 < 4� < T 2 stable node

� < 0 saddle point

4. Linearization and isoclines.

Consider a non-linear autonomous system of equations

x0
1
(t) = F (x1; x2)

x0
1
(t) = G(x1; x2)

(4:1)

and let (x�
1
; x�

2
) be a stationary solution, i.e., a solution to F (x�

1
; x�

2
) = G(x�

1
; x�

2
) =

0: We can then linearize the equation:

x(t) = Ax(t) �Ax� (4:2)

where

A =

�
Fx1(x

�

1
; x�

2
) Fx2(x

�

1
; x�

2
)

Gx1(x
�

1
; x�

2
) Gx2(x

�

1
; x�

2
)

�

Theorem: In any of the cases listed in the summary in the previous section, the

the solutions to the linearized system (4.2) are good approximations to the solutions

to the nonlinear system (4.1) as long as they stay close to the equilibrium (x�
1
; x�

2
):

Another help in studying nonlinear systems is the plotting of isoclines. The tra-

jectories will traverse the curve G(x1; x2)|the zero isocline|horizontally, and the

curve F (x1; x2)|the in�nity isocline|vertically. These two isoclines divides the

x1; x2 plane into regions, and in each of these the derivatives of x1(t) and x2(t)

are constant. These observations are very helpful in the study of the qualitative

behavior of the solutions of (4.1).
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