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1. Introduction
The issue:

Choose from a set of admissible paths or functions x(t)∈ A the one that
maximizes a given objective functional which associates a particular value
to each admissible path V[x(t)].

Example: resource (oil) extraction. Choose an extraction plan x(t) stating
how much is left in the well. To be admissible x(t) has to satisfy:
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The value (or objective) function associates a number to each path. This is
given by
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Three approaches in this course:

1.  Calculus of Variation (Newton, Bernouilli)

max , ( ), &( )

. . ( )

( )x t

T

F t x t x t dt

s t x t

a f
0
z

is admissible.

(1.3)

 

2.   Optimal Control (Pontryagin)
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3.  Dynamic Programming (Bellman).
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Example:
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 Here we start from next to last period and solve the two period problem.

VT − =1 maxV k U f k k U f kT T
k

T T T
T

− − −= − +1 1 1a f a f a fmax ( ) ( ) .β (1.7)

where we have substituted from terminal condition and transition
equation. Note the V kT T− −1 1a f is a function; it gives the value of what can
be achieved during the remaining periods if the optimal plan is followed.
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This certainly depends on how much capital one enters the current period
with. Such variables are called state variables.

Given V kT T− −1 1a f we can go one step further back and solve

V k U f k k V kT T
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going back to the start point we have the whole solution. All these
methods can handle (some) infinite horizon problems.
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2. Dynamic Optimization in Continuous Time

2.1 Calculus of Variation

Look at the following fundamental dynamic problem
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where F is differentiable in its arguments. The problem is dynamic since
&( )x t  is included. Otherwise we could maximize point by point in time.

An economic example could be that F represents profits from a firm that
make output by employing labor (x). Time enters the profit function since
the firm discounts future profits. If changes in the number of persons
employed is costly &( )x t  also enters the profit function. The firm can then
not just in each moment hire the number of persons that maximize current
profits.

A solution to the problem is a function x*(t) (with a continuous
derivative). To find it we try to find some characteristics of it that can help
us to search. We will in particular now derive some necessary conditions
that the solution must satisfy. From them we may find the solution.

The trick is to define admissible deviations. These are the differences
between the optimal path and an admissible but sub-optimal path. Let us
fix a particular admissible path x(t) and call the difference between this

and the optimal path h(t), i.e. h t x t x t( ) ( ) ( )*≡ − . We have now fixed a
particular admissible path as in the figure below.

The constraints in (2.1) imply that h(0)≡h(T)≡0 which in this case are the
only admissibility constraints (together with differentiability).
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Now look at a linear combination of the optimal path and an admissible
deviation. For any constant a let

y a t x t ah t( , ) ( ) ( )*= + (2.2)

which is clearly admissible. Note that y(a,.) defines a particular path so for
each value of a we have a particular path. We say that y(a,.) is a one
parameter family of admissible paths. Since we can calculate a value of
the objective for each path, this means that for each value of a we can
associate a particular value of the objective. Now define the value of the
program if we use y(a,.)
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J(a) is thus an ordinary function of a, not a functional. We can then use
standard optimisation techniques. This value must by assumption be
maximized when a=0. We also find a standard necessary first order
condition for a maximum
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Denote the three first derivatives of  F by F F Ft x x, , &  and suppress
arguments when unnecessary. We then have
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Let the total time derivative dF dtx&  be denoted &
&Fx . We can then (2.5)by

integrating F hx&
&  by parts
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Substituting this into (2.5) we find that the necessary condition is that
along the optimal path
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But this must be true for all the infinitely many different admissible
deviations h. This requires that the value within parenthesis in (2.7) is zero
for all t within the planning horizon.
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This is the Euler Equation for the problem. Note the RHS of (2.8) is the
total time derivative. We can then write this as
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The Euler equation is thus a non-linear second order differential equation
for the optimal path. Sometimes we may be able to solve for the function
x*(t). At least we can derive some properties of it.

Since the solution to a second order differential equation contains two
arbitrary constants we need two more equations to pin down the solution.
For this we use the terminal and start conditions in (2.1).

Below we will see that (2.8) can be interpreted as a an arbitrage condition
between different points in time

A Simple Consumption Example
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The Euler equation is
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Note that we express the Euler equation in terms of c rather than in K.
This will make it easier to interpret and gives us a first order differential
equation in c instead of a second order in k. We could, of course, solve the
problem in terms of K instead.

Before solving we want to interpret the Euler equation  by showing that it
is an arbitrage condition between successive points in time. Integrate
(2.12) from t to t+∆t
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Note that LHS of (2.14) is the gain in utility by saving one marginal unit
of consumption at t, consuming the interest on the extra saving between t
and t+∆t and consuming an extra unit of consumption at t+∆t. If the plan
is optimal this should have zero effect on total utility,

Now we use (2.12) to try to find a solution
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(2.15) tells us a lot of the optimal path although we may be unable to solve
for the level of consumption.

Note that (2.15) must hold for the solution to be optimal also for a non-
constant interest rate. This is intuitive in light of (2.14).

By specifying a utility function we can go further.

In the CARA utility (exponential) case
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Note that this just defines the slope of the optimal path, the level is
determined from the dynamic budget constraint.
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Multiplying by the integration factor and integrating we have
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Now define
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This is the intertemporal budget constraint. Solving this

e c
i r

t dt c
e

i

i r
t e dt

c
e

i

i r
t

e

i

i r e

i
dt

c
e

i

i r
t

e

i

i r e

i

c
e

i

i r

i

itT it T
u

it

dv
T

it T it T itT

it T it T it T

iT

−
−

−

− − −

− − −

−

+ −F
H

I
K = −

L
NM

O
QP

+ −F
H

I
K

= −
L
NM

O
QP

− −L
NM

O
QP

− − −

= −
L
N
M

O
Q
P − −L

N
M

O
Q
P − −L

N
M

O
Q
P

= − + −

z z

z

00 0
0

0

0
0 0

0

0
0 0

2
0

0 2

1

λ λ

λ λ

λ λ

λ

674 84 678

( ) − − + −F
HG

I
KJ =−e

i r

i
T

i r

i
WiT

λ λ 2 0.

(2.21)

Note that if i=r consumption is simply a fraction of wealth, that decreases
with the length of the planning horizon.

c
i

e
W

iT0 0
1

=
− −( )

(2.22)

So with an infinite horizon ct = iWt.

Similarly on the case of CRRA utility

U
c

U c U
c=

−
′ = ′′ = −

−
−

− −1 1
1/

1/ 1

1 1

σ
σ

σ

σ σ
, ,  (2.23)

the Euler equation (2.15) becomes
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Using the intertemporal budget constraint
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Note the results when σ=1 and when T→∞.

A Sufficient Condition

The Euler condition is necessary but not sufficient. It is however also
sufficient for a maximum if F t x x, , &a f  is concave in x, &x  (still assuming a
fixed finite time horizon).

Recall that if F t x x, , &a f  is concave in x, &x  then
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To see this
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Assume that F t x x Ft t, , &* * *e j ≡  satisfies the Euler equation and F is

concave in x, &x . We then want to show that F t x xt t, , &* *e j is optimal, i.e.,

that
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for all admissible paths. Admissible deviations are defined
h t x t x t( ) ( ) ( )*≡ −  with &( ) &( ) & ( )*h t x t x t≡ − .

Now using (2.26) we have that
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By integrating by parts we find that
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This shows that concavity, which gave us the inequality in (2.28), makes
the Euler equation sufficient for optimality. Note that we require global
concavity.

Transversality Conditions

Assume now that kT1  is free. Before we used the terminal condition for kT
to find one integration constant. Now we need some other condition to do
this – the transversality condition.

An admissible deviation h is now not required to satisfy h(T)=0. The
necessary condition (2.4), (2.5) are still valid but (2.6) is changed slightly.



John Hassler, page 13

F hdt F h hF dt

F h T F h hF dt

x

T

x
T

x

T

x T x x

T

& & &

&( ) ( ) &

& &

( ) ( ) & .

0
0

0

0

0

0

0

0

z z

z

= −

= − −
≠ =< 9 (2.30)

So the necessary condition becomes that along the optimal path

F F hdt F T x T x T h Tx x
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So we see that the Euler equation is still valid. In addition to the Euler
equation we have the added condition

F T x T x Tx& , ( ) , & ( )* *e j (2.32)

This is the transversality condition when the horizon is fixed but the
endpoint is free.

Example

In the consumption example (2.10) we expect that if no end condition is
set for K it must be optimal to consume so much that  marginal utility goes
to zero. Let’s verify that.

F t K K e U cK t t
rt

t& ( , , & ) ( ).1 1 1
1

1
= − ′− (2.33)

More General Transversality Conditions

Now look at the case when both the endpoint and the horizon is free. We
still use a to index admissible deviations as in (2.2). Now we also have to
consider admissible deviations in the terminal time T. Thus we let the
admissible deviation from the optimal terminal time T* be an arbitrary
number ∆T so that the terminal time associated with the path y(a,t) is
T(a)=a∆T so ∂ ∂T a a T( ) = ∆ .

The derivative of the whole program can now be written
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where we used the integration by parts as above in the third equality. We
want to express the term h(T) in terms of variations in the final value of
the state variable x denoted ∆x and variations in the stopping time ∆T. The
terminal value of the state variable can be approximated

∆ ∆x h T y T T= +( ) &( )* *e j  which implies that h T x y T T( ) &( )* *= −∆ ∆e j .

Substituting this into the first order condition we get.
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If ∆x and ∆T are free we require
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to have (2.34) satisfied. Note that the stars are suppressed in the last
equation.
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More on the Interpretation of the Euler
Equation

Now let us integrate the Euler equation (2.8) from 0 to T.

F t x x dt
dF t x x

dt
dt

F T x x F x x

x

T
x

T

x x

, , &
, , &

, , & , , & .
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e j e j
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0

z z=

= −

(2.36)

When the endpoint is free we know that F T x xx& * *, , &e j  is zero. From (2.36)

we then see that −F x xx& * *, , &0e j  equals the sum of marginal benefits of an

extra “capital” unit over the full horizon. Alluding to the envelope theorem

we then understand that −F x xx& * *, , &0e j  is the shadow value of an extra unit

of the state variable at time zero. (see the example in (2.33) This turns out
to be true also for all other points in time. But note that these value are as
seen from time 0 (if there is discounting this matters). The transversality
conditions in (2.35) are then easy to interpret. If the terminal value of the
state variable is free, its shadow value should be driven to zero. If the
stopping time is free, the sum of current profits and the generation of
future profits should be driven to zero.

Infinite Horizon

The intuition for the Euler equation above as an arbitrage between
successive time points still suggests that it is valid also in infinite horizon
problems. This is the case for properly specified economic problems where
the objective function converge to something finite for all admissible
deviations. If this is not the case optimality becomes ambiguous.

To find the optimal path we have to modify the optimality conditions. We
must now make sure that F x F T x T x T F x T Tx T x T&( ) &( ), ( ), &( ) &( )∆ ∆+ −a f  goes

to zero as the horizon T goes to infinity. For this purpose we require
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So the shadow value should go to zero when x is free also in the limit. The
sum of current and future profits should also go to zero since in an infinite
horizon problem, there is no fixed stopping time.

In economic infinite horizon models we often want to find a steady state
solution xss (s. t.  & && )x x= = 0  for some properly detrended variable. This
works if time does not enter F or just as an exponential discounting. The
problem is then (time) autonomous. If we take this steady state to be the
boundary condition

lim
t

t
ssx x

→∞
= (2.38)

or

lim &
t
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= 0 (2.39)

we have the necessary information to find the solution with integration
constants. Take the Ramsey problem as an example.
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0

(2.40)

and the initial and boundary conditions

k k

k
t

t

0

0

=
=

→∞
lim & .

(41)

We then have
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F t k k e U f k k

F e U f k

F e U f k k e U c

dF

dt
e U e

dU

dt
e U e U c

t

k
t

k
t t

k t t t t

( , , &) ( ) &

( )

( ) &

&

&

&

= −

= ′ ′

= − ′ − = − ′

= ′ − ′ = ′ − ′′

−

−

− −

− − − −

θ

θ

θ θ

θ θ θ θθ θ

c h

c h a f (2.42)

Note that in the following I find expressions for c rather than for k. Note
also that the discounting terms cancels. So the Euler equation can be
written

′ ′ = ′ − ′′

⇒ = ′
− ′′

′ −

U f k U U c

c
U

U
f k

( ) &

& ( )

θ

θa f (2.43)

This gives us the system of differential equations

& ( )

& ( ) .

c
U

U
f k

k f k c

t t

t t t

= ′
− ′′

′ −

= −

θa f
(2.44)

Note that in terms of k the Euler equation is

e U f k e U e U f k e U k

U f k U U f k U k

t t t t− − − −′ ′ = ′ − ′′ ′ + ′′

′ ′ = ′ − ′′ ′ + ′′

θ θ θ θθ
θ

( ) & &&

( ) & &&,
(2.45)

i.e., a second order differential equation. Note the equivalence between a
second order differential equations and a two equation system of
differential equations.

The system (2.44) has variable coefficients and may be difficult to solve
analytically. But we have already seen that it can be analyzed
qualitatively. First we clearly have steady state. Secondly we can draw its
phase diagram.
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c

k

&ct = 0

&kt = 0

Note that as always all paths (arrows) in the figure satisfy the Euler
equation. The initial and boundary conditions together pick just one path.
Only the saddle path satisfies the boundary condition and by knowledge of
k0  we can then find c0. We have thus pinned down just one path and
(implicitly) found the two integration constants.


