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2.2 Optimal Control

In an optimal control problem we make a distinction between control
variables (e.g., consumption or investments) and state variables (e.g.,
capital stocks or debt) that are governed by a differential equation
(transition equation) and thus given in each point in time.
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This is the simplest problem in optimal control, note that it has no
terminal condition for the state variable. As a means to finding a solution
we define a multiplier function λ(t) for the transition equation.

For a combination of x, u to be admissible it must be that ∀ t⊆[t0,t1]
g t x t u t x t, ( ), ( ) &( )a f − = 0. Adding zero to the instantaneous payoff

function each point in time will not change the problem. The following
rewriting of the problem will prove to be useful

f t x t u t t g t x t u t x t dt

t

t

, ( ), ( ) ( ) , ( ), ( ) &( )a f a fb g
0

1

z + −λ (2.47)

Now we want to get rid &( )x t . So integrate by parts
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giving
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Now we use the same procedure as when deriving necessary conditions for
the Calculus of Variation problem. Instead of looking at admissible
variations of x we look at admissible variations of the control variable u.
Let u* represent the optimal control and u some other admissible control
and define h= u*-u  Let y(a,t) denote the state variable generated by using
the control u*+ah. Let J(a) denote the value of the program (2.49) when
using the control u*+ah. Clearly J(0) is the maximum of J by definition
and J’(0)=0. As before we will use this necessary condition to find
necessary properties of the solution.

J a f t y a t u t ah t g t y a t u t ah t t y a t dt

y a t y a t
t

t

t t

( ) , ( , ) , ( ) ( ) , ( , ) , ( ) ( ) & ( ) ( , )

( , ) ( , ) ,

* *≡ + + + +

− +

z e j e je jλ λ

λ λ
0

1

1 01 0

(2.50)

′ = + + + +

− +

= + + + +

− +
=

z

z
=

J f y t f h g y t g h y t dt

t y t t y t

f g y t f g h dt

t y t t y t

x a u x a u a

t

t

a a

x x a u u

t

t

a a

( ) ( , ) ( , ) & ( , )

( ) ( , ) ( ) ( , )

& ( , )

( ) ( , ) ( ) ( , ),
.

0 0 0 0

0 0

0

0 0
0

0

1

0

1

1 1 0 0

1 1 0 1

0

λ λ λ

λ λ

λ λ λ

λ λ

d i

d i b ge j

674 84

(2.51)

So far we have not put any restrictions on λ. Now let it follow the
differential equation
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=
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x x

1 0
(2.52)

This takes care of the term multiplying y ta( , )0  and produces a
transversality condition for the terminal point in time.
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For (2.51) and (2.52) to hold we also require that along the optimal path

f g hdtu u

t

t

+ =z λa f
0

1

0, (2.53)

for all admissible deviations h. For this to hold for all such deviations we
need that

f g t t tu u+ = ∀ ⊆λ 0 0 1, [ , ]. (2.54)

We have now found that if we define λ(t) according to (2.52) the
necessary condition for optimality can be written as (2.54). To remember
this and the we construct the Hamiltonian.

H t x t u t t f t x t u t t g t x t u t, ( ), ( ), ( ) , ( ), ( ) ( ) , ( ), ( )λ λa f a f a f= + , (2.55)

from which we can derive the necessary conditions for optimality.
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and the initial condition x t x( )0 0=  and the terminal condition λ( )t1 0= .

Interpretations

To see the direct analogy of the Optimal Control approach and standard
Lagrange approach look at a discrete time version of (2.46)
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The Lagrangean is
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First order conditions are

f t x u g t x uu t t t u t t, , , ,a f a f+ =λ 0 (2.59)

This is directly analogous to the optimality condition(2.54).

Differentiate with respect to xt to get

f t x u g t x ux t t t x t t t, , , ,a f a fb g+ + − −λ λ1 1 (2.60)

We know that the interpretation of λt in this problem is the shadow value
of capital. Not consider the following situation. Two individuals solve
identical problems. At t-1 one decides to buy one marginal unit of capital
from the other and to sell it back at t. If prices of capital reflect shadow
values they must be λt and λt-1. The consequences on the total value of the
program is then given by (2.60) where the first part is the direct increase
in value, the second the resell value and the third the price to pay. We
conclude that (2.60) =0. Rewriting we see the direct analogy to (2.52).
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(2.52) is thus a consequence of a correct valuation of xt (not an optimality
condition). The interpretation of λ(t) is identical in the two problems.

Define the optimal value function to problem (2.46) as the value of the
objective function using the optimal control. This obviously depends on
the initial condition and the starting point.

V x t t f s x u ds
t

t

( ( ), ) , ,* *= z e j
1

. (2.62)

V x t tx ( , ) ( ).= λ (2.63)

This is also true at later points in time. Note that λt+s in (2.62) is the
shadow value of the state variable at t+s seen from the time of start of the
program. We could also see this immediately from (2.49).

This implies that we can view the Hamiltonian
f t x t u t t g t x t u t, ( ), ( ) ( ) , ( ), ( )a f a f+ λ  as representing the sum of the current

profit (the first term) and the value of capital accumulation (future profits
generated from accumulating the state variable). That we should maximize
the Hamiltonian in each point in time is then an intuitive condition.

Sufficiency

As in the Calculus of Variation we get a sufficiency condition by
imposing the right concavity condition. Assume that f and g are concave
in x,u and λ≥0. This implies that the Hamiltonian is concave in x,u. Then
since f is concave
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So we want to show that the last integral in (2.64) is ≤0. Substitute for fx
from (2.56) and then integrate by parts the term involving &λ  to get rid of
that.
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If λ≤0 we need that g is convex in x,u. Then H is still concave. If g is
linear we see that its sufficient that f is concave in x,u.

Current Value Hamiltonian

Often we have problems where t only enters as an exponential
discounting. E.g.,
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(2.66)

The Hamiltonian with necessary conditions is
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It is often convenient to use a current shadow value defined as
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Substitute into (2.67)
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We get rid of all the discounting factors by defining the current value
Hamiltonian with associated necessary conditions.
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If T is infinity we may not divide the transversality condition by the
discount factor since it is zero.

Some infinite horizon results

The optimality condition and the differential equation for the shadow
value and the state variable
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are necessary also in the infinite horizon case. The transversality condition
is the problem. If we are ready to assume that the optimal path eventually
settles down to a steady state

lim
t

t
sx x

→∞
= (2.72)

we have enough information to solve for the optimal path. The phase
diagram is one way to do this.

This would be the case in the Ramsey problem.

Another simple case if H(t,x,u,λ) is concave in x,u. Then (2.71) together
with the transversality condition

lim ( )*
t

t t tx x
→∞

− ≥λ 0 (2.73)

for admissible paths x provide sufficient conditions for optimality
(Mangasarin). It seems economically reasonable to assume that

lim *
t

t tx
→∞

=λ 0, i.e. that the value seen from today of the capital stock

infinitely far away into the future is zero. Then its enough to assume that
the shadow value of capital and all admissible levels of x are positive for
(2.73) to hold.

When the “terminal” state is free the transversality condition is “typically”
the intuitive

lim ( )
T

T
→∞

=λ 0 (2.74)

or

lim
T

rT
Te

→∞
− µ . (2.75)

In the free ending time problem and the infinite horizon case we also need
the transversality condition that

lim
T

H
→∞

= 0 (2.76)
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Profits (current and future) are not generated at the optimal stopping time
or in infinity.

Bounded Controls

For a control to be optimal it is necessary that it solves

max , , ,
u

t t tH t x u λa f (2.77)

If u is bounded Hu = 0 is not necessary for an optimum. As in standard
maximization the first order conditions only holds for interior solutions.

a b c d

 f(x)

x

If we maximize f(x) over [a,b] b is optimal and ′f x( )* >0. If the range is

[c,d] c is optimal with ′f x( )* <0. Also in optimal control we may use
Kuhn-Tucker multipliers in this case. Assume we solve problem (2.46) but
restrict u to the range [a,b]. We then form the appended Hamiltonian

H t x u f t x u g t x u
w b u w u a

t t t t t t t t, , , , , , ,
( ) ( ).

λ λa f a f a f= +
+ − + −1 2

(2.78)

The optimality condition now becomes
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Except for the knife-edge case we have that if w1>0, ( )*b u− =0 so the
Hu>0 as in the figure   

The Pontryagin Maximum Principle

Now we come to a more general formulation of the necessary conditions
for a solution to the optimal control problem. We allow for a any finite
number of discontinuity points in the control, n control and state variables
and that the controls are restricted to a constant weak subset of Rn.
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Theorem

For u* and the resulting state vector x* to maximize (2.80) it is necessary
that there exists a constant λ0 and continuous functions λ(t) ( λi(t)
i=1,...,n) such that ∀ ∈t T[ , ]0

λ λ0 00 1 0= ≠or , { , ( )} { , },λ t 0 (2.81)

u x u
u

* *argmax , , , ,= H t λd i (2.82)
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except at points of discontinuity of  u

&λ i xH
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= − (2.84)

and the transversality conditions
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The strange shadow value on the objective function λ0 may under some
perverse circumstances be 0. I believe you can safely ignore this
possibility for the coming courses in economics.

Note that by specifying the control region we may formulate Kuhn-Tucker
first order conditions instead of (2.82).
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At the points in time when the control jumps λ has a kink. It is, however,
always continuous. Note also that H is always continuous. Kuhn-Tucker
shadow values on the control constraints, µt, may be discontinuous.


