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3. Dynamic Optimization in Discrete Time

3.1. Non-Stochastic Dynamic Programming

Consider the dynamic problem
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The direct way to solve this would be to form the Lagrangean
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with first order conditions

β λ
λ λ

t
t t

t t t

U c

f k

′ − =
′ − =−

( ) ,

( ) .

0

01

(3.3)

An alternative way is to recognize the recursive structure of the problem.
(3.1) can be written
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We then solve the problem backwards starting from the last period. In
period T-1 the remaining problem only depends on earlier actions through
kT-1. Substituting from the constraint we then want to solve
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max ( ) ( )
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We need to solve for the function kT =h(kT-1), i.e., for all possible values
of kT-1. Then we solve the problem for T-2 given that we do what is
optimal in T-1. So we solve
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Define the current value function for the last periods problem as
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Substitute into (3.6) and continue in the same iterative way to get
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where s denote the number of periods left to termination.

The equations in (3.8) and (3.9) are called Bellman equations. The first
order conditions implicitly defines difference equations for k.

− ′ − + ′ =− − + − − +U f k k V kT s T s s T s( ) 1 1 1 0a f a fβ . (3.10)

To find the policy functions kT-s+1 =hs (kT-s) we need to find the value
function. In a finite horizon problem this is done as above by starting from
the last period.

Infinite Horizon

In an infinite horizon problem we cannot use the method of starting from
the last period. Instead we can use to different approaches. 1. Guess on a
value function and make sure it satisfies the Bellman equation. 2. Iterate
on the Bellman equation until it converges.
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Guessing

Guessing is often feasible when the problem is autonomous. Then the
value function is independent of time so we can write.
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We can rewrite
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with first order conditions
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Suppose we find a solution to (3.12) (and to (3.13) when relevant) has to
be a function u(kt ). Plugging that into (3.12) we get rid of the max so we
have

V k U k u k V g k u kt t t t t t t( ) , ( ) ( , ( ))= +a f a fβ (3.14)

Note that we can use the envelope result that we can evaluate ′( )V k  as the
partial derivative holding u constant, i.e.,
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If (3.14) is satisfied we have a solution to the value function. On the other
hand, if, for example, u depends on more variables than k,  (3.14) is not
satisfied and our guess was incorrect.

Note that the whole RHS of (3.11) is a functional of the unknown function
V(.) for the given functions U and g. We can define this functional as
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T(V). The Bellman equation then defines a fixed point for T in the space of
functions V. The Bellman equation can thus be written

V k T V k U k u V g k u
u

( ) ( ( )) max , ( , )= ≡ +a f a fβ (3.16)

and a fixed point argument (contraction mapping) can be used to
determine existence and uniqueness. Note that it is a fixed point in the
space of functions we are looking for, not a fixed point for k. I.e., if we
plug in some function of k in the RHS of (3.14) we must get out the same
function on the LHS.

Typically the value function is of a similar for to the objective function.
This is intuitive in the light of (3.14). For example if the utility function in
(3.1) is logarithmic we guess that the value function is of the form
A k Bln +  for some constants A,B. For HARA utility functions (e.g.,
CRRA, CARA and quadratic) the value functions are generally of the
same type as the utility function (Merton, 1971).

Iteration

An alternative way is try to find the limit of finite horizon Bellman
equation as the horizon goes to infinity. Under for economical purposes
quite general conditions this limit exists and is equal to the value function
for the infinite horizon problem

lim
s

s T sV k V k
→∞

− ≡a f a f (3.17)

Using the notation in (3.16) we apply the operator T  until the sequence
converges.

V k T V k
n

na f = lim ( ) (3.18)

if the limit exists. In this case we can be sure that this satisfies the
Bellman equation which when we use the formulation in (3.16) and the
definition in (3.18) becomes
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With discounting it is typically unimportant what we plug in for V0(k) in
(3.17). We can then start with any function and iterate until we get
convergence. This can easily be done numerically, either by specifying a
functional form, if we know that, or by just choosing a grid. In the latter
case we just a set of values for the state variable k k kn0 1, , ,Kl q . V0(k) is
then a set of preliminary values (numbers) for each of the state variables in
the grid.

An Iteration Example

In (3.1) let U(c)=ln(c) and f(k)= kα with 0<α<1.We then have
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Substitute into the value function
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Then
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It is easy to see that the coefficient on k is a power series that converge to
α αβ1−a f  when the horizon goes to infinity (provided αβ <1). Also the

constants converge if also 0<β <1 and the resulting function is
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From this we can derive the optimal policy function by using the first
order condition for the Bellman equation
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Note that the policy function is a stable difference equation under the
assumptions about α,β.

Verification of Guess

If we had guessed the form A k Bln +  the Bellman equation had become
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Plugging this into the Bellman equation yields
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which is satisfied if we set A and B to the values in (3.24).
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State Variables

We often solve the dynamics programming problem by guessing a form of
the value function. The first thing to determine is then which variables
should enter, i.e., which variables are the state variables. The state
variables must satisfy both following conditions

1. To enter the value function at time they must be realized at t.

Note, however, that it sometimes may be convenient to use Et (zt+s) as a
state variable. The expectation as of t is certainly realized at t even if the
stochastic variable is not realized.

2. The set of variables chosen as state variables must together give
sufficient information so that the value of the program from t and
onwards when the optimal control is chosen can be calculated.

What do we need if the per period utility function in (3.1) was
U c ct t( , )−1 ?

Note, we should try to find the smallest such set. Look for example on the
following problem.
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In general we need both k, and l in the value function but if f is linear we
may only need a linear combination. If f k l a k lt t t t( , ) ( )= +  we could
define a new state variable w = k+l and use V(w) as our value function.
The reason is that to compute the value of the program we only need to
know the sum of k and l, their share are superfluous information.
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3.2. Stochastic Dynamic Programming

As long as the recursive structure of the problem is intact adding a
stochastic element to the transition equation does not change the Bellman
equation. Consider the problem

max ( , )

. . ,

( , , ), .

,

, )

u

t
t t

t

t t t t

t

t

E r k u

s t k k

k g k u t

p

p

l q0 0

0 0

1 1 0

∞
=

∞

+ +

∑
=

= ∀ ≥

= RST

β

ε

ε
ε
ε

 with probability 

 with probability (1-

(3.30)

where E is the expectations operator. Note that we have to specify the set
of information that ut can be conditioned on. Clearly it will in general be
optimal to condition for example consumption on observed realizations of
εt.  If the agent may condition on information available at t we get the
Bellman equation with first order conditions
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or for a general distribution F of ε
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where E denotes the expectations operator. Note that V kta f in (3.31) and
(3.32) is a current value function.
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A Stochastic Consumption Example

Consider the following program

max ln
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The consumer decides how much to consume each period. The share ω of
here assets is placed in a riskless asset yielding r in return and (1-ω) in a
risky asset with return zt, that is i.i.d.

The problem is autonomous so we write the current value Bellman
equation with time independent value function V
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Now we use Merton’s result and guess that the value function is

V A a A Bt t( ) ln= + (3.36)

for some constants a and B. Substituting into (3.35) we get

1 1
1 1 1

1

1

1c
E a

A
r z

a
A c

c
A

a

t
t

t
t

t t
t

t

= + + + −

=
−

⇒ =
+

+
β ω ω

β
β

a f a fa fb g

a f .
(3.37)

and
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Note that (3.38) implies that ω is constant since zt is i.i.d.

Now we have to solve for the constant a. This is done by substituting the
solutions to the first order conditions and the guess into the Bellman
equations.
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where k is some constant. This also verifies that the guess worked.

3.3. Stochastic Dynamic Optimization in
Continuous Time

Dynamic Programming in Continuous Time

Assume that J(x) is the optimal current value function for the following
problem.
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If the problem is time consistent we can apply Bellman’s principle of
optimality and split the problem as in the discrete time case. For an
(infinitely) small time interval dt we then get
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Now approximate e-rdt ª1-rdt, and use the first order Taylor
approximation J(xt+dt) ª J(xt)+ J¢(xt)(dx/dt)dt to get
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where I have used the fact that dt2 is very (infinitely) small relative to dt to
approximate it by zero.

A Well-Known Example Again

Assume the consumer solves
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The Bellman equation is
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Now guess that the form of the value function is A k Bln + . Use this and
the solution to the first order condition to get
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We can then easily find the consumption function
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(3.46)

We can check the results for the value function for the case r=θ. Then
consumption is equal to rk so J(k)=ln rk r . This is consistent with (3.46).

Brownian Motion and Itô’s Lemma

An Heuristic Description of a Wiener Process

Consider a discrete binomial process z(t) that during a unitary time
interval takes a positive jump of height 1 with probability 0.5 and negative
jump of height 1 with probability 0.5. I.e,

z

z

( ) ,
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0 0

1
1

=

=
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with probability 0.5

-1 with probability 0.5.

(3.47)

The variance per unit of time is then 1.
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Now divide the time interval [0,1] into n sub-intervals, each of length
∆t nn = 1/  and let the process jump at each sub-interval. The direction of
the jump is independent of earlier jumps. We then adjust the amplitude sn
in each jump so that the variance per unit of time is held constant. I.e., we
want
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(3.48)

For a partition in 2 and 4 sub-intervals the process can be described as in
the graphs.

1

-1

0 1
t

0

0.5

1

-1

0 1
t

0

0.750.500.25



John Hassler 45

If the time interval is divided into n partitions the variable z(1) is
distributed as a Binomial (0.5,n). From the central limit theorem we know
that this is approximately a standard normal distribution if n is large.
Furthermore z(0.5) is approximately a normal with variance 0.5. The same
is true for the variable (z(1)-z(0.5)) which also is independent of z(0.5).

More generally, increments of z over time intervals that are large relative
to the partition are approximately normal with variance equal to the length
of the time interval. Increments over disjoint time intervals are
furthermore independent.

Now look at how the amplitude sn  relative to the length of the time
interval ∆tn change when n increases. From (3.48) we have that
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(3.49)

So we find that the relative amplitude is strictly monotonically increasing
in n. For technical reasons there are complications involved in letting n go
to infinity. But suppose we could, we would then guess that the resulting
stochastic variable has the following properties.

z( ) ,0 0= (3.50)

z t z t N t t t td( ) ( ) ( , ), ,1 0 1 0 1 00 0− = − ∀ > ≥a f (3.51)

z t z t z t z t
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− −
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a f a f independent 
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z is continuous in time, (3.53)

z is nowhere differentiable. (3.54)
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(3.53) is understandable since the jumps sn  would go towards zero when
n increases and (3.54) since the relative jump size continues to grow as n
increases.

The properties (3.50)-(3.54) are the properties of a Wiener Process.

If we think of new information as coming in a continuous flow we should
model it as a Wiener process. It has become popular to model stochastic
variables that are continuous and directly related to information flows as
following a modified Wiener process called a Brownian motion that
typically is written as

dx t z dt t z dz= +µ ω σ ω, , ( , , )a f (3.55)

A typical example is a stock market index. In (3.55) we have allowed for a
non-stochastic but variable time trend. σ multiplies the Wiener process to
allow for different flow rates at different times.

Itô’s Lemma

Suppose we are trying to find a value function J(x) for a problem where
the state variable x follows a Brownian motion. To use the dynamic
programming approach we need to calculate how J evolves over time. For
this we need Itô’s Lemma

dx t z dt t z dz

dJ x J x dt J x dz J x dt

= +

⇒ = ′ + ′ + ′′

µ ω σ ω

µ σ σ

, , ( , , )

( ) ( ) ( ) ( )

a f
1
2

2 (3.56)

We can think of this in the following way. Since the Wiener process is so
extremely non-smooth we need to do a second order Taylor
approximation, the ususal first order that we use for continuous functions
is not good enough.

A way to remember Itô’s Lemma is to make a second order Taylor
approximation and use the rule that
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dz dt

dt

dzdt

2

2 0

0

=

=
=

,

,

.

(3.57)

So

dx t z dt t z dz

dJ x J x dx J x dx

J x dt J x dz J x dt

J x dt dz J x dz

J x dt J x dz J x dt

= +

⇒ = ′ + ′′

= ′ + ′ + ′′

+ ′′ + ′′

= ′ + ′ + ′′

µ ω σ ω

µ σ µ

µ σ σ

µ σ σ

, , ( , , )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

a f
1
2

1
2

1
2

1
2

2

2 2

2 2

2

(3.58)

A Stochastic Consumption Example

Consider the continuous time variant of (3.33)

J W e U c dt

s t dW W r dt r dt dz c dt

W

s
c

r t s
t

s

t t t t

s

( ) max ( )

. .

,

( )=

= + − + −

− −
∞

z
ω

ω ω σ0 11a fa fb g
 given.

(3.59)

The consumer decides how much to consume each point in time. The
share ω of her financial assets is placed in a riskless asset yielding r0dt in
return and (1-ω) in a risky asset with return (r1dt+σdz). Using a variant of
(3.42) the Bellman equation can be written

rJ W U c
E dJ W

dt

s t dW W r dt r dt dz c dt

c

t t t t

a f a fb g

a fa fb g

= +
L
NM

O
QP

= + − + −

max ( )

. .

,ω

ω ω σ0 11

(3.60)
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Using Itô’s lemma and the computational rules in (3.57) we have that

dJ dWJ dW J

W r dt r dt dz c dt J

W r dt r dt dz c dt J

W r dt r dt dz c dt J

W dtJ

t t t

t t t

t t t

t

= ′ + ′′

= + − + − ′

+ + − + − ′′

= + − + − ′

+ − ′′

1
2

1

1
2

1

1

1
2

1

2

0 1

0 1
2

0 1

2

ω ω σ

ω ω σ

ω ω σ

ω σ

a fa fb gc h
a fa fb gc h

a fa fb gc h
a fb g .

(3.61)

and

EdJ

dt
W r r c J W Jt t t= + − − ′ + − ′′ω ω ω σ0 1

2
1

1
2

1a fb gc h a fb g . (3.62)

The first order conditions for (3.60) then becomes

′ − ′ =

− ′ − − ′′ =

U c J

r r W J W J

t

t t

( )

( ) .

0

1 00 1
2 2ω σa f (3.63)

Guessing that J W A W B( ) ln( )= +  we get

c
W

A

r r
A

W
W

A

W
r r

=

− + − =

⇒ − = −

( )0 1
2

2

1 0
2

1 0

1

ω σ

ω
σ

a f

a f

(3.64)

So as in the discrete case consumption is a constant share of wealth and
the share of assets held in the risky asset increase in the premium r1 -r0
and decrease in risk

By substituting the solutions into the Bellman equation we get
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r A W B

W A W r r
W

A

A

W

W
A

W

W A A r r A

c J

J

B

ln

ln ln

ln ln

+

= − + + − −
F

H
G
GG

I

K
J
JJ

+ −
−

= − + + − − − −

′

′′

a f

a fb g

a fb g

a fb gc h a fb g

ω ω

ω σ

ω ω ω σ

0 1

2
2

0 1
2

1

1
2

1

1 1
1
2

1

} }

678

1 2444444444 3444444444

(3.65)

This verifies that the guess was correct and that A=1/r as in the discrete
time case.


