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1 Introduction

Recently, a number of researchers have begun considering economic models that capture

some of the experimental evidence from the psychology literature. So-called “preference

reversals”—a common occurrence in experiments—have received particular attention. These

suggest, it has been argued, that consumers do not have the geometric discounting that has

been used as a cornerstone for intertemporal macroeconomic analysis. In our opinion, the

experimental evidence is far from conclusive. However, deviations from geometric discounting

may change the positive and normative analysis of macroeconomic models significantly.1

Therefore, we view the experimental evidence as far too potentially important to be ignored.

One of the purposes of this paper is to derive positive and normative implications of a

neoclassical macroeconomic equilibrium model when it is extended in a minimal way to be

consistent with preference reversals.

Motivated by the psychology literature, David Laibson, in a series of recent papers (see,

e.g., Laibson (1994, 1996, 1997) and Harris and Laibson (2000)), has employed models

where agents have time-additive utility with quasi-geometric discounting weights. Laibson’s

framework has origins in Strotz (1956) and can be found in Phelps and Pollak (1968). We

will refer to this model as the “Laibson model”. In this model, the consumer can be viewed

as having different “selves”—one for every time period. These selves disagree on the ranking

of consumption paths and are assumed not to be able to commit to their future behavior.

Laibson models decisions as the outcome of a dynamic game between the different selves.

Although attractive in many ways, the Laibson model is not problem-free. First, it is

based on ad-hoc (not axiomatically founded) preferences. Second, since it is a nontrivial dy-

namic game, it allows many equilibria; even the set of Markov equilibria is infinite, as shown

in Krusell and Smith (2000). Third, questions about welfare have conceptual problems: how

should a hypothetical social planner evaluate welfare (which selves should this planner care

about, and how)? Fourth, even with some (arbitrary) assumption about whom the planner

cares about, policy analysis is not necessarily so interesting: either activism is trivially called

for—if we assume that the government can provide the commitment mechanism that pri-

vate consumers do not have access to—or it becomes impossible to implement. In the latter

case, if we assume that the government/planner at t at least in part takes into account the

preferences of the consumer’s self at t, normative questions cannot be addressed, because

then the government’s preferences are time-inconsistent. In such a situation, we can only

perform positive policy analysis: we can only study the outcome of a dynamic game between

1See, e.g., Krusell and Smith (2000) and Krusell, Kuruşçu, and Smith (2000a,b).
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successive governments (see Krusell, Kuruşçu, and Smith (2000a,b)).

An alternative to the Laibson model has recently been developed, one that has the poten-

tial to avoid all the mentioned problems. Gul and Pesendorfer (2000a,b) provide axiomatic

foundations for a utility function representation of preferences that deviates in a minimal way

from standard textbook preferences in order to allow preference reversals. In their frame-

work, a consumer for whom bundle x is feasible but who can also choose other bundles may

be strictly worse off than if his choice set only contained x. The consumer might still choose

x from the larger set, but be “tempted” by other elements in the choice set and therefore

have to exercise “self-control” in order to refrain from choosing the tempting elements. It is

this self-control that is associated with a utility loss; the preference for the smaller set over

the larger one can be interpreted as a “preference for commitment”. The utility function

representation Gul and Pesendorfer derive consists of two functions. One of these represents

the preferences a consumer would have if his choice sets were always singletons—this is the

“standard” part of the utility function—and the other describes the preferences governing

the temptation.

We have three main goals with the research described herein: (i) to extend the competitive

equilibrium neoclassical growth model to incorporate consumer preferences that are of the

Gul-Pesendorfer variety; in this sense, our paper is parallel to Barro’s (1999) paper analyzing

neoclassical growth using the Laibson model; (ii) to use the model in order to analyze some

simple taxation and welfare issues; and (iii) investigate possible connections between the

Gul-Pesendorfer setup and the Laibson setup. In terms of the last point, the model we

develop attempts to draw a connection between the Gul-Pesendorfer model and the Laibson

model by assuming that the temptation the consumer is faced with is to behave as a quasi-

geometric discounter. The Laibson setup appears, in a certain sense to be made precise

below, as a special and limiting case of our present framework.

We describe the basic temptation framework in a two-period consumption-savings model

with production and competitive markets. That model, described in Section 3.2, is then

extended to an infinite horizon, using a specialization of Gul and Pesendorfer (2000b). Our

specialization is aimed at creating temptation behavior based on quasi-geometric discounting.

Using the recursive framework, we specify two versions of these temptation preferences: one

which is a true special case of Gul-Pesendorfer (2000b)’s general framework and which puts

zero weight on the future, and one which puts positive weights on the future and thus is a

possible extension of the Gul-Pesendorfer model. We say “possible” here because this work

is not completed.
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The model can be analyzed with recursive methods. However, like in Laibson’s model,

not only steady states but also dynamics are difficult to find. We therefore focus on special

parametric cases: first, we study isoelastic utility and allow any neoclassical technology,

and we then restrict attention further to logarithmic utility, Cobb-Douglas production, and

100% depreciation. In the former case, we are able to describe a set of functional equations

in the aggregate state—capital—that jointly determine the global dynamics of the model.2

Steady states of this model are nontrivial—they are, unlike in the standard model or in the

Laibson model, a function for example of the elasticity of intertemporal substitution. We do

not characterize global dynamics here, but we provide methods for analyzing local dynamics

using linearization. For our most parameterized case, we provide full analytical solutions for

the recursive competitive equilibrium.

Equipped with methods for analyzing equilibria, we then ask whether the government,

somehow, can promote well-being, perhaps by diminishing the temptation and self-control

problems? We pay special attention to taxation, but we also study the relevance of price

taking: if the government could shut down markets and force autarky, in the sense of moving

to home production, then how would allocations and welfare change? Our findings, in general

terms, are that optimal government policy ought to involve a subsidy to investment and that a

decentralization with price-taking behavior may or may not, depending on parameter values,

be better than autarky. Our discussion of policy starts with an analysis of the two-period

model. The intuition that goes along with the two-period model can then be seen to partially

survive an extension of the time horizon.

Like the dynamic Gul-Pesendorfer model, our framework is recursive, so it does not

express time-inconsistency of preferences; rather, it emphasizes temptation and self-control

as giving rise to behavior that “looks” time-inconsistent (such as the “preference reversals”

noted in experiments) . Because of the recursivity, welfare is unambiguously defined. As

a result, our incorporation of quasi-geometric preferences into this framework, providing a

possible interpretation of the Laibson model with different selves, also delivers a way to

interpret welfare in that model. Under our interpretation, it turns out that the appropriate

measure of current welfare of an agent is not utility as perceived by the current self, but that

perceived by the last period’s self.

Our paper is organized as follows. In Section 2, we briefly describe the Laibson model

and some of the key results from Krusell and Smith (2000) and Krusell, Kuruşçu, and

Smith (2000a,b). This summary sets the stage for the development of our version of the

2This analysis borrows from insights in Hercowitz and Krusell (2000), which analyzes steady states and
dynamics in Laibson’s model.
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Gul-Pesendorfer model in Section 3. This section characterizes competitive equilibrium

outcomes in a two-period model and begins the analysis of an infinite-horizon model with

a quasi-geometric temptation. In Section 4, we use recursive tools and various parametric

restrictions to study competitive equilibrium outcomes in the infinite-horizon model. In

Section 5, we study the role of policy in the Gul-Pesendorfer model. Section 6 concludes.

2 Quasi-Geometric Discounting: the Laibson Model

In this section, we briefly describe the Laibson model. This description will serve as a frame

of comparison for the later discussion of our version of the Gul-Pesendorfer model.

The basic setup of the Laibson model is as follows. Time is discrete and infinite and

begins at time 0; there is no uncertainty. An infinitely-lived consumer derives utility from a

stream of consumption at different dates. We assume that the preferences of this individual

are time-additive, and that they take the form of a sequence of preference profiles:

Self 0: U0 = u0 + β (δu1 + δ2u2 + δ3u3 + . . .)

Self 1: U1 = u1 + β (δu2 + δ2u3 + . . .)

Self 2: U2 = u2 + β (δu3 + . . .)

. . .

When β = 1, we have standard, time-consistent, geometric preferences. When β 6= 1,

there is a time-inconsistency: at date 0, the trade-off between dates 1 and 2 is perceived

differently than at date 1, and so on. When β < 1, we have a “bias towards the present”: the

individual thinks “I want to save, just not right now”; when β > 1, a bias towards the future

is expressed as “I want to consume, just not right now”. We refer to this class of preferences

as quasi-geometric, as they are a one-period deviation from the standard geometric case.3

As time progresses, the individual will change his mind about the relative values of

consumption at different points in time so long as β 6= 1. He would, therefore, if he could,

want to commit to his future consumption levels. The standard assumption is that there

is no way for the consumer to do so. Further, it is most often assumed that the consumer

realizes that his preferences will change—is “sophisticated”—and makes the current decision

taking this into account.4 This means that the decision-making process becomes a dynamic

game with the agent’s current and future selves as players. Finally, it is typical to focus on

3The term quasi-hyperbolic is used in the literature as referring to the same preference setup. We prefer
to use the term quasi-geometric since it is the most appropriate mathematical term.

4Others, such as O’Donoghue and Rabin (1999), do not make this assumption.
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Markov equilibria: at a moment in time, no histories are assumed to matter for outcomes

beyond what is summarized in the current stock of wealth held by the agent.5

In some ways, the extension to quasi-geometric preferences does not represent a giant

departure from the standard model. As Barro (1999) first showed, under logarithmic pref-

erences there is observational equivalence between the standard preference class and the

quasi-geometric one in the set of competitive equilibria he considers. Under isoelastic util-

ity, there is no equivalence, but the set of steady states Barro considers is the same for

the two models. For the quasi-geometric model to produce radically different output, other

frictions and wrinkles seem necessary as well, such as for example borrowing constraints and

idiosyncratic uncertainty (often considered in Laibson’s work) or further restrictions in asset

markets.

However, in some sense this similarity between the standard model and the Laibson

model is superficial. The latter model has the following non-standard features. First, there

is a severe indeterminacy of equilibria to the individual consumer’s decision problem even

when attention is restricted to Markov equilibria. As Krusell and Smith (2000) shows, for

any concave utility function and any budget constraint (including budgets with decreasing

returns to asset accumulation), the set of steady states is indeterminate, as is the set of paths

leading in to any steady state. Thus, the uniqueness of the standard model is a knife-edge

case: whenever β 6= 1, it breaks down. Relatedly, computation of equilibria is very difficult

in general. As Hercowitz and Krusell (2000) show, it is possible to use linearization methods

to solve for competitive equilibria, but for planning problems or utility functions outside the

isoelastic class, all methods we know of fail. Both methods based on value function iteration

and Euler equations produce cycling and, when convergence occurs, initial conditions matter.

Our preliminary interpretation of these results is that it is the multiplicity of equilibria that

makes algorithms unstable.

Second, policy analysis is difficult in the Laibson model. One reason is the lack of a

natural welfare measure. How should a hypothetical social planner evaluate policy: which

selves should this planner care about, and how? The framework does not suggest a natural

answer to this question. Now one could decide that some particular social welfare function

is desirable. Or one could simply treat the different selves as different people and use the

Pareto criterion. But whenever the planner’s objective is a (stationary) aggregation of the

5The restriction to Markov equilibria seems a natural way of restricting the set of equilibria. Laibson
(1994) and Bernheim, Ray, and Yeltekin (1999) study trigger-strategy equilibria. Renegotiation arguments
for the Markov assumption are particularly compelling in this “one-agent” game, although we do not know
of a solid formal defense for this position.
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utilities of the different selves, there is an additional unresolved issue: time inconsistency of

the planner’s preferences. One thus needs to decide to what extent the government can help

these agent(s) commit to future consumption plans, e.g., by committing to future taxes. If

it can, then policy is relatively trivially recommendable; with a bias toward the present, the

government could improve outcomes (for all selves) by giving future agents incentives to save

more. If it cannot, then one would need to consider time-consistent government policy by

analyzing a game between a sequence of governments. But this analysis would be more of

positive than normative nature. We examine such equilibria in Krusell, Kuruşçu, and Smith

(2000b), where we curiously find that time-consistent policy equilibria with a benevolent

government lead to lower welfare than does the laissez-faire competitive equilibrium: if the

government could commit to zero taxes forever, everybody would be better off.

To summarize, even though the consideration of quasi-geometric preferences may appear

as a minor extension of the standard geometric-preference model, it leads to a number of

problems. Some of these problems seem to be related to a lack of axiomatic foundation:

with axiomatically-based decision theory, decisions lead to unique outcomes by definition

(and computation is therefore made easier) and welfare evaluation is unambiguous.

3 Temptation and Self-Control: the Gul-Pesendorfer

Model

In this section, we develop our version of the Gul-Pesendorfer model. We first introduce

the ideas of temptation and self-control as formalized by Gul and Pesendorfer (2000a,b).

Next, before introducing a full-blown dynamic model, we study equilibrium outcomes in a

two-period consumption-savings problem with a Laibson-like temptation. Finally, we study

equilibrium outcomes in an infinite-horizon setting.

3.1 An Axiomatic Foundation for Temptation and Self-Control

Gul and Pesendorfer (2000a) formalize the notions of temptation and self-control by imag-

ining that consumers have preferences over sets of lotteries. In addition to appropriately

modified versions of the usual axioms (completeness, transitivity, continuity, and indepen-

dence), Gul and Pesendorfer introduce a new axiom called “set betweenness”. Letting A

and B be sets, this axiom states that A � B implies A � (A ∪ B) � B. Loosely speaking,

under this axiom it is possible that a consumer strictly prefers a given set to another, larger

set of which the first set is a strict subset .
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These axioms allow for several possibilities. First, there is the standard case: A � B

implies A ∼ (A ∪B); here, with the preferred consumption bundle being in A, the addition

of the set B to the set A is irrelevant. Second, the consumer could have a preference for

commitment: A � B implies A � (A ∪ B); here, the consumer is made worse off by the

addition of the set B. Third, the consumer could succumb to temptation: A � B and

B ∼ (A ∪ B); here, the consumer prefers A to B and yet he is indifferent between B and

A∪B because he knows that if his choice set is A∪B he will “succumb” to the “temptation”

contained in B. Finally, the consumer could instead exert self-control: A � (A ∪ B) and

(A ∪B) � B; here, the consumer has enough self-control not to succumb to the temptation

contained in B, yet he nonetheless prefers the smaller set A to the larger one A∪B because

exerting self-control is costly (i.e., reduces his utility).

Gul and Pesendorfer (2000a) show that these axioms imply a representation of preferences

in terms of two functions Ũ and Ṽ :

W̃ (A) ≡ max
a∈A

{Ũ(a) + Ṽ (a)} −max
ã∈A

Ṽ (ã),

where W̃ (A) is the utility that the consumer associates with the set A. The consumer’s

optimal action is given by arg maxa∈A {Ũ(a) + Ṽ (a)}, but the utility of this action depends

on the amount of self-control that the consumer exerts when he makes this choice. In

particular, Ṽ (a)−maxã∈A Ṽ (ã) ≤ 0 can be viewed as the disutility of self-control given that

the consumer chooses action a. If arg maxa∈A {Ũ(a) + Ṽ (a)} = arg maxã∈A Ṽ (ã) then either

(i) we are in a standard case (Ũ = Ṽ ) where temptation and self-control play no role in

the consumer’s decision-making or (ii) the agent succumbs, i.e., lets Ṽ govern his choices

completely. Reiterating, when the two argmaxes are not the same, the agent exercises self-

control.

3.2 The Two-Period Consumption-Savings Model with Tempta-
tion

We now specialize the general framework described in Section 3.1 to a simple two-period

general equilibrium economy with production. This example allows us to illustrate the

role of temptation and self-control in determining equilibrium outcomes and welfare before

turning to a fully dynamic economy in the next section.

A typical consumer in the economy values consumption today (c1) and tomorrow (c2).

Specifically, the consumer has Gul-Pesendorfer preferences represented by two functions

ũ(c1, c2) and ṽ(c1, c2); these functions are the counterparts of Ũ and Ṽ , respectively, in
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Section 3.1. Figures 1–3 illustrate. Figure 1 describes a choice set consisting of a single

point. Figure 2 depicts a number of different singleton choice sets, each giving rise to the

same utility; the curve connecting these points is the standard indifference curve given by

ũ—the one representing the consumer’s preferences if temptation were not an issue. Figure

3 takes the same point as in Figure 1 but adds to the choice set the rest of a typical budget

line. Now the consumer will not like this set as much as the initial singleton set, even if the

singleton set represents the one point that would maximize ũ over the budget set, because

the larger set involves a temptation.

We specify the functions ũ and ṽ as follows:

ũ(c1, c2) = u(c1) + δu(c2)

and

ṽ(c1, c2) = u(c1) + βδu(c2),

where u has the usual properties and 0 < β ≤ 1. When β = 1, we have the standard

model in which temptation and self-control do not play a role. When β < 1, however, the

temptation function gives a stronger preference for present consumption. The strength of

this preference increases as β increases. The decision problem of a typical consumer, then,

is:

max
c1,c2

{ũ(c1, c2) + ṽ(c1, c2)} −max
c̃1,c̃2

ṽ(c̃1, c̃2) (1)

subject to a budget constraint that we will specify below.

Each consumer is endowed with k1 units of capital at the beginning of the first period

and with one unit of labor in each period. Each consumer rents these factors of production

to a profit-maximizing firm that operates a neoclassical production function. In equilibrium,

given aggregate capital k̄, the rental rate r(k̄) and the wage rate w(k̄) are determined by the

firm’s marginal product conditions. Given these prices, the consumer’s budget constraint is

described by the set:

B(k1, k̄1, k̄2) ≡ {(c1, c2) : ∃k2 : c1 = r(k̄1)k1 + w(k̄1)− k2 and

c2 = r(k̄2)k2 + w(k̄2)}

where k2 is the consumer’s asset holding at the beginning of period 2 (i.e., his savings in

period 1) and k̄i is aggregate capital in period i. Since all consumers have the same capital

holdings in period 1, k̄1 = k1; in equilibrium, k̄2 = k2, but when choosing k2 the consumer

takes k̄2 as given. Inserting the definitions of the functions ũ and ṽ into (1) and combining
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terms, a typical consumer’s decision problem is:

max
(c1,c2)∈B(k1,k̄1,k̄2)

{2u(c1) + δ(1 + β)u(c2)} − max
(c̃1,c̃2)∈B(k1,k̄1,k̄2)

{u(c̃1) + βδu(c̃2)}. (2)

In this two-period problem, the “temptation” part of the problem (i.e., the second max-

imization problem in the objective function) plays no role in determining the consumer’s

actions in period 1. As we describe in Section 3.3, this is not true when the horizon is longer

than two periods. The temptation part of the problem does, however, affect the consumer’s

welfare, as we discuss below.

The consumer’s intertemporal first-order condition is:

2

(1 + β)δ

u′(c1)

u′(c2)
= r(k̄2).

It is straightforward to see that the intertemporal consumption allocation (which, in effect,

maximizes ũ + ṽ) represents a compromise between maximizing ũ = u(c1) + δu(c2) and

maximizing ṽ = u(c1) + βδu(c2). In the former case, the first-order condition is:

1

δ

u′(c1)

u′(c2)
= r(k̄2),

whereas in the latter case, the first-order condition is:

1

βδ

u′(c1)

u′(c2)
= r(k̄2).

Since
1

βδ
≥ 2

(1 + β)δ
≥ 1

δ
,

the consumer’s consumption allocation is tilted towards the present relative to maximizing

u(c1)+δu(c2) and is tilted towards the future relative to maximizing the temptation function

u(c1) + βδu(c2). Figure 4 illustrates these points.

To determine the competitive equilibrium allocation, set k̄2 = k2 in the consumer’s first-

order condition and recognize that r(k̄) = f ′(k̄), where f is the firm’s production function

(which has the standard properties). To wit,

2

(1 + β)δ

u′(c̄1)

u′(c̄2)
= f ′(k̄2),

where c̄i is aggregate (per capita) consumption in period i. It is easy to see that this is the

same first-order condition that obtains in autarky, i.e., in an environment without markets in

which each consumer operates his own “backyard” technology. In this case, the consumer’s

9



problem is to maximize (2) subject to the technological constraints c1 = f(k1) − k2 and

c2 = f(k2). Thus the competitive equilibrium and autarky allocations coincide in the two-

period model.

Nonetheless, the consumer is better off in autarky than in competitive equilibrium. This

happens because the temptation is weaker in autarky, implying that the disutility of self-

control is smaller. The temptation is weaker in autarky because the production possibilities

frontier (which plays the role of the consumer’s “budget constraint” in autarky) lies strictly

inside the (triangular) budget set faced by a consumer in competitive equilibrium. In other

words, the utility that the consumer could gain by succumbing to the temptation is larger un-

der competitive equilibrium than in autarky. Since the allocations are identical, the consumer

must exert more self-control (i.e., incur a larger disutility of self-control) under competitive

equilibrium than in autarky. Consequently, the consumer is worse off in competitive equi-

librium than in autarky, even though the outcomes are the same! Figure 5 illustrates these

points.

3.3 The Infinite-Horizon Consumption-Savings Model with Temp-
tation

In this section, we study temptation and self-control in an infinite-horizon setting. First,

we describe how Gul and Pesendorfer (2000b) extend the static (or two-period) framework

developed in Gul and Pesendorfer (2000a) to an infinite-horizon setting. We then modify the

Gul-Pesendorfer model to incorporate a Laibson-like quasi-geometric temptation. Finally,

we study competitive equilibrium outcomes in this framework under various functional form

and parameter restrictions.

3.3.1 The Gul-Pesendorfer Infinite-Horizon Model

Gul and Pesendorfer (2000b) provide additional suitable axioms to build a foundation for

preferences over a domain which they define to be sets of pairs of current consumption and

a continuation problem.6 That is, an agent has a set of possible choices in the current

period, and each of these choices specifies a current consumption level and a set of choices

(of the same nature) for next period. In a simple price-taking framework with a constant net

interest rate r for transforming consumption today into consumption tomorrow, a set could

summarized by the agent’s present-value wealth, which we denote w. The characterization

6A continuation problem is itself an infinite-horizon consumption problem, that is, a set of alternatives
within which the consumer can choose.
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theorem in Gul and Pesendorfer (2000b) applied to this price-taking example implies that

the agent’s consumption preferences and associated consumption problem can be represented

using two functions u and v and a discount rate δ together with a recursive functional

equation:

W (w) = max
w′≥0

{u(w−w′/(1+r))+δW (w′)+v(w−w′/(1+r))}−max
w′≥0

{v(w−w′/(1+r))}, (3)

where W (w) denotes the lifetime utility that the consumer assigns to the set of intertemporal

consumption bundles defined by present-value wealth w.

In this formulation, the temptation function v can be viewed as a “free parameter”. Gul

and Pesendorfer (2000b) study a function v that is convex and increasing. They show that

this framework can produce (apparent) “preference reversals” of the kind documented in

experimental studies.

3.3.2 The Gul-Pesendorfer Model with a “Laibson” Temptation

We now introduce a Laibson-like temptation function v into Gul and Pesendorfer’s infinite-

horizon setup. This can be viewed as an attempt to understand the Laibson model described

in Section 2.

Before studying competitive equilibrium outcomes, we first develop our ideas in the con-

text of an “autarky” (or Robinson Crusoe) model. As in the two-period model in Section

3.2, we use capital rather than present-value wealth as a state variable (we do this merely

for analytical convenience). In our framework, the counterpart of the functional equation

(3) is:

W (k) = max
k′≤f(k)

{u(f(k)− k′) + δW (k′) + V (k, k′)} − max
k̃′≤f(k)

{V (k, k̃′)}, (4)

where the temptation function V is quasi-geometric:

V (k, k′) ≡ γ{u(f(k)− k̃′) + βδW (k′)}.

Notice that when γ = 0 or β = 1, we have as a special case the standard model without

temptation or self-control. When β < 1, we can approach the Laibson model by making γ

large: as γ goes to infinity, the consumer puts so much weight on the temptation that he

succumbs. This limiting case is appealing because it provides one way to evaluate policy

in the Laibson model. That is, this case provides a potential resolution to the problem of

which of the consumer’s “selves” should be used when assessing welfare.

A potential pitfall of this formulation is that the operator TW (w) defined by the right-

hand side of the functional equation (4) does not satisfy Blackwell’s sufficient conditions for
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T to be a contraction mapping. Although T does satisfy discounting, it is not monotone in

general. A failure of monotonicity can occur because a greater utility from future wealth may

imply lower total utility since the disutility from self-control may increase with the higher

temptation resulting from a higher utility from future wealth. Figure 6 illustrates this point.

In fact, the functional equation (4) can admit multiple solutions for W , in a manner

reminiscent of the findings of Krusell and Smith (2000) for the Laibson model. It is straight-

forward, for example, to find examples of multiplicity (provided β < 1) when the state

space is discrete and γ is sufficiently large. Moreover, it is possible to find examples where

there is a unique solution for W but where iteration backwards does not converge to this

W . Unlike in Krusell and Smith (2000), “mixing” solutions typically do not appear to be

regular equilibria. It should also be possible to generalize these examples of multiplicity to

indeterminacy in the case of a continuous state space (as Krusell and Smith (2000) do for

the Laibson model).

This multiplicity suggests that, in moving outside of the framework of Gul and Pesendor-

fer (2000b) (by making the temptation depend on future consumption as well as today’s con-

sumption), the theoretical framework developed in Gul and Pesendorfer (2000b) no longer

applies. In particular, it is possible that not all of the solutions to the functional equation

represent well-defined recursive preferences over sets of consumption bundles. We suspect,

but have not yet been able to prove, that continuous solutions do represent a set of Axioms

very close to those in Gul and Pesendorfer’s analysis.

When β = 0, however, T is a contraction mapping, in which case the functional equation

does have a unique solution. When β = 0, the consumer is tempted to consume all of

his wealth immediately, so that this special case is similar in some respects to the case

developed in Gul and Pesendorfer (2000b) (in which the temptation depends only on current

consumption). Here, however, the temptation function is a multiple γ of u, where u is the

“usual” concave period utility function rather than an arbitrary convex function of current

consumption. The free parameter γ can then be varied to calibrate the strength of the

temptation (just as β can be varied in the Laibson model).

These remarks notwithstanding, when β > 0, there are special parametric assumptions

that “work” in the sense that we can find analytical solutions to the functional equation (4).

Before studying these parametric examples, however, it might be instructive to derive the

“Euler equations” associated with the problem defined by (4). Since we must determine two

“decision rules” (one for each of the maximization problems on the right-hand side of (4)),
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there are two Euler equations:

u′(ct) = δ
1 + βγ

1 + γ
f ′(kt+1){u′(ct+1) + γ[u′(ct+1)− u′(c̃t+1)]},

where c̃t+1 refers to temptation consumption in the next period, and

u′(c̃t) = βδf ′(k̃t+1){u′(c̃t+1) + γ[u′(c̃t+1)− u′(˜̃ct+1)]},

where c̃t is current temptation consumption, c̃t+1 is next period’s actual consumption given

that you succumb today, and ˜̃ct+1 is next period’s temptation consumption given that you

succumb today.

Both these expressions look like standard Euler equations except in two places: (i) the

discount factors; and (ii) the added term γ(u′t+1 − ũ′t+1). The discount factors, which are

ranked (given that 1 > 1+βγ
1+γ

> β), show that the temptation discount factor is lower than

that of the actual one, provided β < 1. The term γ(u′t+1 − ũ′t+1) is the derivative of the

disutility/cost of self-control, γ(ut+1 − ũt+1), with respect to wealth. This term is positive,

since temptation consumption is higher than actual consumption and the utility function

is strictly concave. The interpretation of these equations is that the marginal benefit from

wealth tomorrow exceeds u′t+1, because the self-control cost gets smaller as wealth increases

in this model. This is an effect which is parallel to an effect in the Laibson model. The

Laibson model yields an Euler equation which reads

u′(ct) = βδu′(ct+1){f ′(kt+1) + (1/β − 1)g′(kt+1)},

where g(k) is the savings given a capital stock of k and, thus, g′(kt+1) > 0 is the marginal

savings propensity in the next period. Here, there is an added benefit to savings, too: so long

as β < 1, the benefit arises due to the disagreement between the current and the next selves.

Any unit of wealth next period will decrease consumption that period (by an amount g′t+1,

so g′t+1u
′
t+1 measured in t + 1 utils). In return, it will increase consumption thereafter. The

future consumption increase is normally worth the same amount in present value (g′t+1u
′
t+1)

from the first-order condition of next period’s savings choice: the envelope theorem. In the

Laibson model, however, it is valued higher by the current self by a factor 1/β, since the next

self, who makes the savings decision in question, has an additional weight β on every utility

flow from t + 2 and on. So like in the Gul-Pesendorfer model, the Laibson agents perceive

a cost involving future savings—they are too low—and higher current savings decrease this

cost.
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4 Solving for Recursive Competitive Equilibria with a

Quasi-Geometric Temptation

We now study competitive equilibrium with a quasi-geometric temptation. The economic

environment is the same as for the two-period model studied in Section 3.2, appropriately

extended to an infinite horizon. We use recursive tools to characterize the equilibrium. A

typical consumer takes factor prices and an aggregate law of motion k̄′ = G(k̄) as given. His

decision problem can be characterized recursively as follows:

W (k, k̄) = max
k′
{u(r(k̄)k + w(k̄)− k′) + δW (k′, k̄′) + V (k, k′, k̄, k̄′)} − (5)

max
k̃′
{V (k, k̃′, k̄, k̄′)},

where

V (k, k′, k̄, k̄′) = γ
(
u(r(k̄)k + w(k̄)− k′) + βδW (k′, k̄′)

)
.

Substituting the temptation function into (5) and combining terms, the consumer’s problem

becomes:

W (k, k̄) = max
k′
{(1 + γ)u(r(k̄)k + w(k̄)− k′) + δ(1 + βγ)W (k′, k̄′)} −

γ max
k̃′
{u(r(k̄)k + w(k̄)− k̃′) + βδW (k̃′, k̄′)}.

Ignoring possible multiplicity for the moment, this problem determines a “realized” decision

rule g(k, k̄) which solves the first maximization problem and a “temptation” decision rule

g̃(k, k̄) which solves the second maximization problem. In equilibrium, we require g(k̄, k̄) =

G(k̄).

We will now consider two special parametric examples. First, we consider the case of

isoelastic utility: u(c) = (1 − σ)−1c1−σ, where σ > 0. Later, we consider what we call

the “log-Cobb” model: u is logarithmic, capital depreciates fully in one period, and the

production function is Cobb-Douglas. For the case of isoelastic utility, we can obtain a

complete characterization of the steady state in the competitive equilibrium and a partial

characterization of the dynamic behavior of the competitive equilibrium. For the “log-Cobb”

model, we can obtain a complete characterization of both steady states and dynamics.

4.1 Isoelastic Utility and Any Convex Technology

In this section, we study competitive equilibrium when utility is isoelastic. Proposition 1

characterizes equilibrium dynamics for this case.
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Proposition 1 Suppose that u(c) = (1 − σ)−1c1−σ, where σ > 0, and that f is a stan-

dard neoclassical production function. In competitive equilibrium, the realized decision rule

g(k, k̄) = λ(k̄)k + µ(k̄) and the temptation decision rule g̃(k, k̄) = λ̃(k̄)k + µ̃(k̄), where the

functions λ, µ, λ̃, and µ̃ solve the following functional equations:

µ(k̄) +
w(k̄′)− µ(k̄′)

r(k̄′)− λ(k̄′)
=

w(k̄)− µ(k̄)

r(k̄)− λ(k̄)
λ(k̄) (6)

µ̃(k̄) +
w(k̄′)− µ(k̄′)

r(k̄′)− λ(k̄′)
=

w(k̄)− µ̃(k̄)

r(k̄)− λ̃(k̄)
λ̃(k̄) (7)

1 + γ

δ (1 + βγ) r
(
k̄′
) = (1 + γ)

(
(r(k̄′)− λ(k̄′))λ(k̄)

r(k̄)− λ(k̄)

)−σ

− γ

(
(r(k̄′)− λ̃(k̄′))λ(k̄)

r(k̄)− λ(k̄)

)−σ

(8)

1

δβr
(
k̄′
) = (1 + γ)

(
(r(k̄′)− λ(k̄′))λ̃(k̄)

r(k̄)− λ̃(k̄)

)−σ

− γ

(
(r(k̄′)− λ̃(k̄′))λ̃(k̄)

r(k̄)− λ̃(k̄)

)−σ

(9)

where k̄′ = G(k̄) = g(k̄, k̄) = λ(k̄)k̄ + µ(k̄).

Proof: See the Appendix.

The fact that a consumer’s decision rules are linear in his consumer capital implies that

the steady-state wealth distribution is indetermined. This result stands in contrast to Gul

and Pesendorfer (2000b) who find that the steady-state wealth distribution is uniquely de-

termined when the temptation function is convex.

4.1.1 Steady States

Let k̄ss denote the steady-state aggregate capital stock in competitive equilibrium; by def-

inition, k̄ss = G(k̄ss) = λ(k̄ss)k̄ss + µ(k̄ss). This equation, together with equations (6)–(9)

evaluated at k̄′ = k̄ = k̄ss, jointly determine the steady-state capital stock and the values of

the functions λ, µ, λ̃, and µ̃ at the steady-state capital stock. Using these equations, it is

straightforward to verify that λ(k̄ss) = 1, µ(k̄ss) = 0, and k̄ss solves:

1 + γ

r(k̄ss)δ(1 + βγ)
= 1 + γ − γ

1−
1−

(
β(1+γ)
1+βγ

)1/σ

r(k̄ss)


σ

. (10)

Given these values, equation (8) determines λ̃(k̄ss) and equation (9) determines µ̃(k̄ss).

An interesting feature of equation (10) is that the steady-state capital stock, and hence

the steady-state rate of interest, depends on the preference parameter σ. This dependence

disappears if β = 1 or if γ = 0, in which case equation (10) simplifies to the familiar formula
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r(k̄ss) = δ−1. In addition, this dependence disappers in the limit as γ goes to infinity. In

particular, the limiting steady-state interest rate is

1− δ(1− β)

βδ
.

This is the same steady-state interest that obtains in the Laibson model with isoelastic

utility.

For a particular numerical example, Table 1 illustrates how the steady-state interest rate

r(k̄) − 1 varies as β and σ vary. For these calculations, we assume that the technology is

Cobb-Douglas, so that r(k̄) = αk̄α−1 + 1− η, where η is the rate of depreciation of capital,

and w(k̄) = (1− α)k̄α. We set α = 0.36, η = 0.1, δ = 0.95, and γ = 1.

Table 1:
Steady-State Interest Rate

σ = 0.5 σ = 1 σ = 2 σ = 3 σ = 5 σ = 10
β = 0.4 8.724% 7.519% 7.123% 7.012% 6.930% 6.872%
β = 0.7 6.303% 6.192% 6.142% 6.127% 6.114% 6.105%

Table 1 shows that the steady-state capital stock rises (and consequently the steady-state

interest falls) as β and σ increase.

Needless to say, the determination of the steady state is more complex in this model

than in the standard model. Moreover, without isoelastic utility, we do not know how to

find steady states without simultaneously solving for the decision rules globally.

4.1.2 Dynamics

Global dynamics can be characterized numerically by solving the four functional equations

(6)–(9) for the four unknown functions. A variety of standard numerical methods can be

used to accomplish this task.

Local dynamics around a steady state can be determined by differentiating the four

equations with respect to k̄, imposing the steady-state condition k̄′ = k̄ = k̄ss, and then

solving for λ′(k̄ss), µ′(k̄ss), λ̃′(k̄ss), and µ̃′(k̄ss). The steady state is thus locally stable if

λ′(k̄ss)k̄ss + λ(k̄ss) + µ′(k̄ss) is less than one in absolute value.

In particular, we have implemented the following numerical algorithm for examining local

dynamics numerically. First, postulate that

λ(k̄) = 1 + λ′(k̄ss)(k̄ − k̄ss)
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µ(k̄) = µ′(k̄ss)(k̄ − k̄ss)

λ̃(k̄) = λ̃(k̄ss) + λ̃′(k̄ss)(k̄ − k̄ss)

µ̃(k̄) = µ̃(k̄ss) + µ̃′(k̄ss)(k̄ − k̄ss),

where λ̃(k̄ss), µ̃(k̄ss), and k̄ss are determined as described in Section 4.1.1 and the four first

derivatives λ′(k̄ss), µ′(k̄ss), λ̃′(k̄ss), and µ̃′(k̄ss) are unknown parameters to be determined by

the numerical algorithm. Second, rewrite each of the equations (6)–(9) so that the right-hand

side is zero. Third, given values of the four first derivatives, use a finite-difference method to

approximate the derivatives with respect to k̄ of the left-hand sides of each of the equations

(6)–(9). Fourth, vary the four first derivatives in order to set the derivatives of the left-hand

sides each of the four equations equal to zero.

For a particular numerical example, Table 2 illustrates how the local speed of convergence

to the steady state (i.e., the quantity λ′(k̄ss)k̄ss + λ(k̄ss) + µ′(k̄ss)) varies as σ and β vary,

holding the steady state constant. For these calculations, we assume, as we did in Section

4.1.1, that the technology is Cobb-Douglas. We set α = 0.36, η = 0.1, and γ = 1; for each

pair (σ, β), we choose δ so that the steady-state interest rate is the one that prevails when

β = 1 and δ = 0.95 (recall that when β = 1, the steady-state interest rate does not depend

on σ).

Table 2:
Speed of Adjustment to the Steady State

β = 0.25 β = 0.5 β = 0.75 β = 1
σ = 0.5 0.79093 0.79757 0.80155 0.80477
σ = 1 0.86039 0.86039 0.86039 0.86039
σ = 3 0.93254 0.93075 0.92854 0.92643

Table 2 shows that, holding the interest rate fixed, the (local) speed of convergence to the

steady state increases as β increases and as σ increases. Because the interest rate is fixed

in Table 2, these results indicate that the model in which temptation and self-control play a

role is not observationally equivalent to the standard model (i.e., the one that obtains when

β = 1), except in the special case that σ = 1, i.e., the case of logarithmic utility (see Section

4.1.4 below on the “log-Cobb” model).

4.1.3 The Special Case β = 0

When β = 0, one can show that λ̃(k̄) = 0 and µ̃(k̄) = −w(k̄)/(r(k̄ − 1): the temptation

is to consume all present-value wealth. In this case, equation (10), which determines the
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steady-state interest rate, simplifies to:

1

δr(k̄ss)
= 1− γ

1 + γ

(
r(k̄ss)

r(k̄ss)− 1

)−σ

.

Hence, even when β = 0, the steady-state interest rate depends on the preference parameter

σ.

4.1.4 The “Log-Cobb” Model

We turn now to the “log-Cobb” model: logarithmic u, full depreciation, and Cobb-Douglas

production (i.e., f(k) = Akα, 0 < α < 1). Under these parametric restrictions, we can

completely characterize the competitive equilibrium by means of analytical expressions for

the decision rules. Specifically,

W (k, k̄) = A0 + A1 log(k̄) + A2 log(k + ϕk̄),

where A0, A1, A2, and ϕ are undetermined coefficients that can be computed using a standard

guess-and-verify method.7 Since u is isoelastic, the “realized” decision rule has the same form

as above, with

λ(k̄) =
δ

δ + (1− δ) 1+γ
1+βγ

and µ(k̄) = 0, implying that

G(k̄) = g(k̄, k̄) =
αδ

δ + (1− δ) 1+γ
1+βγ

Ak̄α.

The “temptation” decision rule also has the same form as above, with

λ̃(k̄) =
δβ

1− δ + δβ
r(k̄)

and

µ̃(k̄) =
δβ

1− δ + δβ
w(k̄)− ϕ(1− δ)

1− δ + δβ
G(k̄).

If γ = 0 or β = 1, then we have the standard model: the savings rate out of current output

is αδ. If γ > 0 and β < 1 (i.e., if there are self-control problems), then the savings rate falls

relative to the standard model. As γ goes to infinity, the realized decision rule converges

to the decision rule in the Laibson model under log-Cobb functional form restrictions (see

Krusell, Kuruşçu, and Smith (2000b)).

7In particular, A1 = α−1
(1−δ)(1−αδ) A2 = 1

1−δ , and ϕ = 1−α
α

[(1−δ)(1+γ)+δ(1+βγ)]
(1−δ)(1+γ) .
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For the log-Cobb model, it is straightforward to compare competitive equilibrium out-

comes to those that prevail in autarky (i.e., when consumers simply operate their own tech-

nologies). In this case, W (k) = a + b log(k), where a and b can be determined using a

guess-and-verify method.8 The “realized” decision rule is

g(k) =
αδ

αδ + (1− αδ) 1+γ
1+βγ

Akα

and the “temptation” decision rule is

g̃(k) =
αβδ

1− αδ + αβδ
Akα.

Unlike in the two-period model, the competitive equilibrium and autarky allocations no

longer coincide in the “log-Cobb” infinite-horizon model: in particular, if there are prob-

lems of self-control, the savings rate is higher in competitive equilibrium than in autarky.

To understand the origin of this result, consider a 3-period model first. In period 2, the

temptation consumption is higher in a competitive equilibrium than in autarky (this was

shown in Section 3.2). Therefore, the marginal disutility of saving in period 1 that arises

because of the increase in temptation in period 2 is lower in the competitive equilibrium,

since u is strictly concave. As a result, the savings in a competitive equilibrium will be

higher. Welfare, however, is not necessarily higher under competitive equilibrium. For low

values of γ, autarky delivers higher welfare than competitive equilibrium, but this ranking

is reversed for high values of γ.

5 Policy in the Gul-Pesendorfer Model

In this section, we ask whether government policy can help consumers overcome their self-

control problems. We address these questions first in the context of the two-period model.

We then turn to the role of policy in the infinite-horizon model.

5.1 Policy in the Two-Period Model

We compare the welfare implications of two kinds of policies: command policy and optimal

taxation policy. By command policy, we mean that the government chooses for the consumer.

In this case, since the consumer’s choice set is, in effect, reduced to a single point, issues

of temptation and self-control are eliminated. Command policy therefore delivers a first-

best outcome: an intertemporal allocation c? tailored to u (i.e., such that u(c1) + δu(c2) is

maximized).

8In particular, b = α
1−αδ .
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Command policy is almost certainly infeasible. Instead, the government could attempt

to design taxation policy in order to help the consumer with his self-control problems. We

consider two kinds of taxation in a competitive equilibrium setting with arbitrary utility

function u and production function f (as in Section 3.2, these functions satisfy the usual

properties). Specifically, in the first period, there is a proportional tax τy on income and a

proportional tax τi on investment. The consumer’s budget set, then is:

B(k1, k̄1, k̄2) ≡ {(c1, c2) : ∃k2 : c1 = (r(k̄1)k1 + w(k̄1))(1− τy)− (1 + τi)k2 and

c2 = r(k̄2)k2 + w(k̄2)}

We assume that the government balances its budget in each period. Since the government

has no exogenous expenditures to finance, its budget constraint reads: τyf(k̄1) = −τik̄2. The

consumer’s problem, then, is:

max
(c1,c2)∈Bτ (k1,k̄1,k̄2)

{2u(c1) + δ(1 + β)u(c2)} − max
(c̃1,c̃2)∈Bτ (k1,k̄1,k̄2)

{u(c̃1) + βδu(c̃2).} (11)

In equilibrium, k2 = k̄2 and the tax rates are such that the government’s budget balances

(in other words, the government has only one free tax instrument at its disposal).

The government’s objective is to choose the two tax rates so that an individual’s welfare

is maximized in equilibrium (subject to the government’s budget constraint). Proposition 2

states that, when β < 1, the government can improve an individual’s welfare by imposing a

positive tax on income and a negative tax (i.e., a subsidy) on investment.

Proposition 2 In the two-period model, the optimal investment tax τi is negative.

Proof: See the Appendix.

With optimal taxation, then, the consumer is induced to save more, so that his intertemporal

consumption allocation is tilted more towards the future than in the absence of taxation. At

the same, the change in the slope of the consumer’s budget constraint reduces (other things

equal) the temptation faced by the consumer. The net result is to increase the consumer’s

welfare.

These results can be made especially clear by imposing log-Cobb functional form restric-

tions. In this case, we can explicitly compute the competitive equilibrium outcome with

optimal taxation. It turns out that the optimal consumption allocation is precisely the

one that obtains under the command policy. Figure 7 illustrates this result. Although the

command outcome is identical (given log-Cobb assumptions) to the competitive equilibrium

outcome with optimal taxation, welfare is still higher under the command outcome because

the consumer does not incur a self-control cost.
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Taxation in the autarky case will improve welfare as well. Like in the competitive equi-

librium, the command policy allocation—that is, the policy that maximizes welfare using the

commitment utility function (with β = 1)—is the best allocation when taxation is allowed.

This allocation delivers welfare that lies between that of the command policy (i.e., when

the government chooses for the consumer) and that of the best tax policy in competitive

equilibrium.

5.2 Policy in the Infinite-Horizon Model

When the horizon is infinite, the government’s command policy would give the consumer a

consumption path that coincides with the one that the consumer would choose if he had no

self-control problems and his discount rate were equal to δ. Given “log-Cobb” functional form

assumptions, optimal taxation policy in competitive equilibrium has the same qualitative

effects as in the two-period model studied in Section 5.1 under log-Cobb functional form

assumptions. In particular, the government chooses a subsidy on investment and a tax on

income so that the consumer has the same savings rate that he does under the command

policy. Thus optimal taxation policy increases welfare, but the consumer is still worse off

than under the command policy since he incurs the cost of self-control.

Although perhaps not a clean “policy experiment”, suppose that the government could

choose between competitive equilibrium and autarky (that is, home production): these de-

centralizations embody very different amounts of price-taking. Then we saw above that

price-taking (assuming no taxes) will be preferable when γ is not too small. With taxa-

tion in addition, price-taking is worse, since it delivers higher temptations but the same

consumption allocation as under autarky.

6 Conclusion

We try to extend the neoclassical growth model to incorporate self-control problems in

the consumption-savings choice à la Gul and Pesendorfer (2000a,b). With a larger cake,

the consumer is tempted to eat more, exercises self-control in order not to eat the whole

cake, but still ends up eating more than in the absence of the temptation. The model

with temptation leads to a significantly more complicated analysis than the standard model.

Steady states are no longer straightforward to pin down, and only in the case of isoelastic

utility can we arrive at relatively simple algebraic expressions. Outside this class, the steady

states fundamentally are supported by the dynamics of temptation, and they need to be
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solved for jointly with these dynamics. When steady states can be solved for, they depend

on the curvature of the utility function, which they do not in the standard model (nor in the

Laibson model). We show that global dynamics can be described with a set of functional

equations, and that local dynamics can be derived using differentiation of these equations.

The analysis of taxation, for which we provide intuition using a two-period model and

then solve using a parametric example allowing closed-form solutions, suggests that the

government ought to subsidize investment. This result was not a foregone conclusion; it

turns out that the temptation utility is decreased with a subsidy to investment.

Finally, we just wish to point out that one fundamental question remains unanswered

in the policy analysis we provide. We find that government policy helps; but given that

it helps, why don’t agents themselves create “governments”? If living under commands is

good for me, why can’t I buy it in the market? Or can I? Religion, for example, may be

viewed as a market-provided vehicle for alleviating self-control problems. When the market

can provide such help, government policy may not be desirable. We need a deeper way of

drawing distinctions between what the market can do and the government can do.
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Appendix

Proof of Proposition 1: The two Euler equations are:

(1 + γ)u′(r(k̄)k + w(k̄)− g(k, k̄)) =

δ(1 + βγ)r(g(k̄, k̄))((1 + γ)u′(r(g(k̄, k̄))g(k, k̄) + w(g(k̄, k̄))− g(g(k, k̄), g(k̄, k̄)))−

γu′(r(g(k̄, k̄))g(k, k̄) + w(g(k̄, k̄))− g̃(g(k, k̄), g(k̄, k̄))))

and

u′(r(k̄)k + w(k̄)− g̃(k, k̄)) =

δβr(g(k̄, k̄))((1 + γ)u′(r(g(k̄, k̄))g̃(k, k̄) + w(g(k̄, k̄))− g(g̃(k, k̄), g(k̄, k̄)))

−γu′(r(g(k̄, k̄))g̃(k, k̄) + w(g(k̄, k̄))− g̃(g̃(k, k̄), g(k̄, k̄)))).

Inserting the guesses for g̃(k, k̄) and g(k, k̄) into these equations and using the fact that u is

isoelastic, we obtain:
(1 + γ)

δ(1 + βγ)r(g(k̄, k̄))
=

(1 + γ)

(r(k̄′)− λ(k̄′))λ(k)

r(k̄)− λ(k̄)

k + µ(k̄)
λ(k̄)

+ w(k̄′)−µ(k̄′)
(r(k̄′)−λ(k̄′))λ(k̄)

k + w(k̄)−µ(k̄)
r(k̄)−λ(k̄)


−σ

−γ

(r(k̄′)− λ̃(k̄′))λ(k)

r(k̄)− λ(k̄)

k + µ(k̄)
λ(k̄)

+ w(k̄′)−µ̃(k̄′)

(r(k̄′)−λ̃(k̄′))λ(k̄)

k + w(k̄)−µ(k̄)
r(k̄)−λ(k̄)


−σ

1

δβr(g(k̄, k̄))
=

(1 + γ)

(r(k̄′)− λ(k̄′))λ̃(k)

r(k̄)− λ̃(k̄)

k + µ̃(k̄)

λ̃(k̄)
+ w(k̄′)−µ(k̄′)

(r(k̄′)−λ(k̄′))λ̃(k̄)

k + w(k̄)−µ̃(k̄)

r(k̄)−λ̃(k̄)


−σ

−γ

(r(k̄′)− λ̃(k̄′))λ̃(k)

r(k̄)− λ̃(k̄)

k + µ̃(k̄)

λ̃(k̄)
+ w(k̄′)−µ̃(k̄′)

(r(k̄′)−λ̃(k̄′))λ̃(k̄)

k + w(k̄)−µ̃(k̄)

r(k̄)−λ̃(k̄)


−σ

Note that these two Euler equations must hold for all k. This implies that:

µ(k̄)

λ(k̄)
+

w(k̄′)− µ(k̄′)

(r(k̄′)− λ(k̄′))λ(k̄)
=

w(k̄)− µ(k̄)

r(k̄)− λ(k̄)
(12)

µ(k̄)

λ(k̄)
+

w(k̄′)− µ̃(k̄′)

(r(k̄′)− λ̃(k̄′))λ(k̄)
=

w(k̄)− µ(k̄)

r(k̄)− λ(k̄)
(13)
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µ̃(k̄)

λ̃(k̄)
+

w(k̄′)− µ(k̄′)

(r(k̄′)− λ(k̄′))λ̃(k̄)
=

w(k̄)− µ̃(k̄)

r(k̄)− λ̃(k̄)
(14)

µ̃(k̄)

λ̃(k̄)
+

w(k̄′)− µ̃(k̄′)

(r(k̄′)− λ̃(k̄′))λ̃(k̄)
=

w(k̄)− µ̃(k̄)

r(k̄)− λ̃(k̄)
(15)

Imposing these conditions in the Euler equations, we obtain:

1 + γ

δ (1 + βγ) r
(
k̄′
) = (1 + γ)

[
(r(k̄′)− λ(k̄′))λ(k̄)

r(k̄)− λ(k̄)

]−σ

− γ

[
(r(k̄′)− λ̃(k̄′))λ(k̄)

r(k̄)− λ(k̄)

]−σ

1 + γ

δβr
(
k̄′
) = (1 + γ)

[
(r(k̄′)− λ(k̄′))λ̃(k̄)

r(k̄)− λ̃(k̄)

]−σ

− γ

[
(r(k̄′)− λ̃(k̄′))λ̃(k̄)

r(k̄)− λ̃(k̄)

]−σ

Note that we now have 6 equations but only 4 unknowns (i.e., the functions λ̃, µ̃, λ, µ).

We can show, however, that equations (12) and (14) imply equations (13) and (15), thereby

reducing the number of equations to 4. Q.E.D.

Proof of Proposition 2: The first-order conditions for the competitive consumer’s maximiza-

tion problem are:

(1 + τi)(1 + γ)u′(c1) = δ(1 + βγ)r(k̄′)u′(c2)

(1 + τi)u
′(c̃1) = δβr(k̄′)u′(c̃2)

c1 = (r(k̄)k + w(k̄))(1− τy)− k′(1 + τi)

c2 = r(k̄′)k′ + w(k̄′)

c̃1 = (r(k̄)k + w(k̄))(1− τy)− k̃′(1 + τi)

c̃2 = r(k̄′)k̃′ + w(k̄′)

Let the solution to the first-order conditions be denoted by k′ = g(k, k̄, τ) and k̃′ =

g̃(k, k̄, τ). We can use the government budget constraint, −g(k̄, k̄, τ)τi = f(k̄)τy, to write

decision rules as a function only of τi. In addition,

c̃1 = (r(k̄)k̄ + w(k̄))(1− τy)− k̃′(1 + τi)

= f(k̄)− k̃′ + (k̄′ − k̃′)τi.

The value function for a typical consumer in competitive equilibrium is:

V (k̄, k̄, τi) = (1 + γ)u(f(k̄)− k̄′) + δ(1 + βγ)u(f(k̄))−
γ
{
u(f(k̄)− k̃′ + (k̄′ − k̃′)τi) + δβu(r(k̄′)k̃′ + w(k̄′))

}
.

Taking the derivative of the value function with respect to τi and imposing the first-order

conditions above, we get

dV

dτi

∣∣∣∣∣
τi=0

= −γ

(
u′(c̃1)[k̄

′ − k̃′] + δβu′(c̃2)[r
′(k̄′)k̃′ + w′(k̄′)]

dk̄′

dτi

)
.
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Again using the first-order conditions, we obtain

dk̄′

dτi

=
(1 + γ)u′(c1)

(1 + τi)(1 + γ)u′′(c1) + δ(1 + βγ)f ′′(k̄′)u′(c2) + δ(1 + βγ)f ′(k̄′)2u′′(c2)
< 0.

This result, together with the facts that r′(k̄′)k̃′ + w′(k̄′) = r′(k̄′)(k̃′ − k̄′) and k̄′ − k̃′ > 0

implies that
dV

dτi

∣∣∣∣∣
τi=0

< 0.

Q.E.D.
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