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Abstract

We study the implications for optimal average inflation when there is both a role for money as a

medium of exchange and when nominal wages are downwardly rigid. The model also features trans-

action costs, as in Dotsey, King, and Wolman (1999), and a non-Walrasian labor market with search

frictions as in Trigari (2009). The introduction of downward nominal wage rigidities into a model

with flexible wages can be decomposed into two effects; first, introducing (symmetric) wage adjust-

ment frictions and, second making them asymmetric. Productivity growth is important for the level of

inflation and also affects the size of the effect of the asymmetric wage friction. Without productivity

growth, symmetric wage adjustment frictions leads to a yearly inflation rate of approximately 1.0%,

while introducing an asymmetry on top of this increases the inflation rate by an additional 0.7%. With

productivity growth, inflation is almost a percent lower and the effect of adding asymmetric wage fric-

tions is also somewhat smaller - about 0.5%. Overall, we find an optimal inflation rate of about 0− 2

percent.
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1 Introduction

A robust empirical finding is that money wages do not fall to any significant degree during an economic

downturn. A large number of studies report substantial downward nominal wage rigidity in the U.S. as

well as in Europe and Japan.1 Overall, the evidence points towards a sharp asymmetry in the distribution

of nominal wage changes around zero. That is, money wages rise but they seldom fall. Recently, Schmitt-

Grohe and Uribe (2010) raised the puzzle that most central banks targets an annual inflation rate of two

percent, whereas current monetary models implies an optimal inflation rate that is usually negative.2

This paper analyzes the long-run Phillips curve and optimal monetary policy in a model with asym-

metric nominal wage rigidities. Specifically, we focus on how the slope of the long-run Phillips curve and

the optimal inflation rate is affected by downward nominal wage rigidities and aggregate productivity

growth.

To this end, we develop a DSGE model that can account for several important factors in determining

the optimal inflation rate. To capture the Friedman argument for deflation, to avoid ineffi cient economizing

in money balances, we introduce a transaction cost (as in Khan, King, and Wolman (2003)). To include

the Tobin argument for a positive rate of inflation in order to grease the wheels of wage formation in

the presence of downward nominal wage rigidity (see Tobin, 1972), we introduce price- and wage-setting

frictions.3 Since our ultimate aim is to study the optimal inflation rate, it is important to allow optimal

price- and wage-setting decisions to depend on the inflation rate. In order to do so we model price- and

wage-setting decisions as state dependent. Specifically, price setting follows Dotsey, King, and Wolman

(1999), while wage setting is based on a modified version of the bargaining model in Holden (1994). Beside

costs stemming from the potential break up of the firm/worker match when initiating bargaining under

disagreement, firms and workers also face a fixed costs of disagreement, such as disruptions in business

relationships and deteriorating management-employee relationships.4 Another key feature of the model

1The empirical evidence ranges from studies using data from personnel files presented in Altonji and Devereux (2000),
Baker, Gibbs, and Holmstrom (1994), Fehr and Goette (2005), and Wilson (1999), survey/register data in Altonji and
Devereux (2000), Akerlof, Dickens, and Perry (1996), Dickens et. al., 2007, Fehr and Goette (2005), Holden and Wulfsberg
(2008), Kuroda and Yamamoto (2003a, 2003b) to interviews or surveys with wage setters like Agell and Lundborg (2003),
and Bewley (1999), just to mention a few.

2An exception is Kim and Ruge-Murcia (2009) who finds an optimal inflation rate of about 0.4 percent in a model
with downward nominal wage rigidity. However, including productivity growth would, almost certainly push this figure
substantially below zero. See Amano et. al., 2009, for the effect of productivity growth on optimal inflation. For a detailed
overview of the literature, see Schmitt-Grohe and Uribe (2010).

3Another reason for a positive steady state inflation rate is to avoid the non-negativity constraint in nominal interest rates
to bind too frequently, see e.g. Billi and Kahn (2008).

4We thus modify the bargaining set up in Holden (1994) by assuming that disagreement can lead to a break up of the
firm/worker match rather than a conflict period. This generates a bargaining formulation that is in line with standard
search-matching models used in the macro literature (see e.g. Trigari, 2009 and others)
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is that, consistently with empirical evidence, work proceed at the old contract, if no party credibly can

threaten with disagreement. Moreover, since the fixed disagreement costs need not be identical for workers

and firms, this opens up for downward nominal wage rigidities as a rational outcome. Finally, to provide

a scope for a surplus to be bargained over, the model features a search-matching labor market akin to

the model of Trigari (2009) and Christoffel, Kuester, and Linzert (2009).

To parametrize the distribution of disagreement costs in the model, we use a minimum distance

estimation approach to match the nominal wage change distribution implied by the model to the empirical

nominal wage change distribution observed in U.S. micro data. The estimated model yields a distribution

of wage changes that captures the main features of the empirical wage change distribution. A key feature

of our model that allows the model to fit the micro data with any precision is the introduction of firm-

level heterogeneity in terms of productivity, as well as, aggregate productivity growth. The first feature

is needed to capture the large variance of the distribution of nominal wage changes in the data and the

second feature is needed to capture the fact that nominal wages increase more than the inflation rate on

average. The introduction of these two features also has implications for the optimal inflation rate via

effects through the steady state wage distribution.5

Two related papers are Kim and Ruge-Murcia (2009), and Fagan and Messina (2009). They analyze the

effects on the optimal inflation target from downward wage rigidity. Both these papers rely on asymmetric

adjustment costs in wages as in Rotemberg (1982) to generate downward wage rigidities. It thus becomes

key for the planner to avoid these costs in the design of optimal policy. We take a different stand on the

underlying reason for downward wage rigidities. We think of this friction as stemming from disagreement

costs and the implied effects on the threat points in the wage bargaining. Since disagreement will not

occur in equilibrium, these costs are of no direct consequence for the planner when designing optimal

policy. Though indirectly, via the effect on nominal wage formation through private sector behavior,

these costs will affect the design of optimal policy. Importantly, we model wage dispersion explicitly and

thus capture the associated ineffi ciencies that are due to suboptimal levels of output across firms and

workers. This strategy also implies that we can match the model to micro data, which allows us to put

additional empirical discipline on the analysis. The paper by Fagan and Messina (2009) also uses micro

data when estimating their model, but in contrast to them, we allow for inflation to affect price- and

wage-setting frequencies, a role for money as a medium of exchange. The study by Kim and Ruge-Murcia

(2009) also contains the latter two of these features, but relies only on macro data for estimation and

5The effect of aggregate productivity growth has been studied previously by Amano et. al., 2009, finding a negative
impact on the optimal steady state inflation rate.
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evaluation. Moreover, both these papers lack productivity growth.

We find that the optimal annual rate under downward nominal wage rigidities is 0.8%, as compared

to a deflation rate of about 0.6% when wages are flexible. The optimal annual inflation rate found here

is larger than in the baseline monetary models discussed in Schmitt-Grohe and Uribe (2010) where the

optimal inflation rate is at most around zero. The introduction of downward nominal wage rigidities into

a model with flexible wages can be decomposed into two effects. First, wage adjustment frictions are

introduced and second, the frictions become asymmetric. Then the effect of introducing asymmetric wage

adjustment frictions is about 0.5%; with symmetric frictions, the optimal inflation rate is about 0.3%.

Without productivity growth, the result changes substantially. Then the optimal inflation rate with

symmetric frictions is about 1.0%, while the rate is about 1.7% under downward nominal wage rigidities.

Thus, allowing for productivity growth reduces the optimal inflation rate by almost a percent and also

reduces the effect of downward nominal wage rigidities somewhat. The reason is that productivity growth

can perform the same effect of inflation; erosion of real wages, which is more important under asymmetric

wage frictions. However, we also show that varying the degree of flexibility in wage formation has large

effects on this conclusion. Specifically, letting new hires wages to be perfectly flexible leads to an optimal

annual deflation rate of around 0.5%.

This paper is organized as follows, in section 2, we outline the model. In section 3, the optimal policy is

described, in section 4 the calibration of the model is presented and in section 5 the results are presented.

Finally, section 6 concludes.

2 The Economic Environment

The basic framework shares many elements of standard DSGE models. There is a monopolistically

competitive intermediate goods sector where producers set prices facing a known random (periodically)

fixed cost of price adjustment as in Dotsey, King, and Wolman (1999). Thus, for tractability, we assume

that prices have a finite duration of at most J periods. There is also a wholesale sector that uses

capital and labor to produce an input for the intermediate-goods sector.6 The input is sold on a perfectly

competitive market. The wholesale sector rents capital on a competitive capital market and post vacancies

on a search and matching labor market. Wages are bargained between workers and the firm following

a slightly modified version of Holden (1994). In the model, the parties bargain every period. Each

bargaining round starts with one of the parties making a bid, then the other party responds yes or no. If

6For simplicity, we abstract from capital accumulation, though.
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the response is no, there is a choice whether to continue bargaining in good faith and post a counter offer

or enter into disagreement. If the latter choice is made, there is a probability that the match breaks down

and the wage is determined in a standard Rubinstein-Ståhl fashion. Moreover, in case a party initiate

bargaining under disagreement, both parties face their own known fixed disagreement cost (randomly

drawn at the beginning of each period). This cost may be due to deteriorating firm/worker and customer

relationships.7 In case none of the parties chooses to bargain under disagreement, but being unable to

settle on a new wage, work continues according to the old contract. If the disagreement cost is suffi ciently

high, it is not credible for a party to threaten with disagreement in order to achieve a new wage contract.

Instead, the outcome will be to continue to work according to the old contract already in place, thus

endogenizing nominal wage rigidity. To capture the downward nominal wage rigidity observed in micro

data it is required that firms, on average, face higher disagreement cost. As with prices, we assume that

wage contracts last for at most Jw periods.

In order to introduce complete consumption insurance, we assume that there is a representative family

as in Merz (1995). Finally, notation is simplified by assuming a flexible price retail sector that repacks the

intermediate goods in accordance with consumer preferences and sells them to consumers on a competitive

market.

2.1 Retail firms

We follow Erceg, Henderson, and Levin (2000) and Khan, King, and Wolman (2003) and assume a

competitive retail sector that buy intermediate goods and sell a composite final good. The composite

good is combined from intermediate goods in the same proportions as households would choose. Given

intermediate goods output levels Y j
t produced by intermediate goods firms j, the amount of the composite

good Yt is

Yt =

J−1∑
j=0

ωjt

(
Y j
t

)σ−1
σ

 σ
σ−1

, (1)

where σ > 1 and ωj is the share of retail firms producing Y j
t at price P

j
t . The price Pt of one unit of the

composite good is

Pt =

J−1∑
j=0

ωjt

(
P jt

)1−σ 1
1−σ

. (2)

7Note that there is no disagreement in equilibrium, and hence the equilibrium disagreement cost is zero. Thus, in contrast
to state-dependent pricing, these cost neither enter resource constraints nor firm/worker value functions.
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2.2 Intermediate goods firms

The intermediate goods firms optimally choose whether to change prices, given a menu cost cp of changing

prices. Adjustment costs are drawn from a cumulative distribution function GP . Let the probability of

adjusting prices in a given period be denoted by αjt , given that the firm last adjusted it’s price j periods

ago. We assume that there is some J > 1 such that αJ = 1.

2.2.1 Prices

Given that an intermediate goods firm last reset prices in period t− j, the maximum remaining duration

of a price contract is J−j, where J is the maximum duration of a price contract and αjt is the adjustment

probability j periods after the price was last reset. The intermediate goods firms buys a homogeneous

input from the wholesale firms at the real price pwt . Finally, the average or expected (real) adjustment

cost, in terms of aggregate output, is given by

Ξj,t =
1

αjt

∫ G−1P (αjt)

0
xdGP (x) . (3)

Note that the upper bound is given by the maximum menu cost cp that induces price adjustment, i.e.,

the cp that solves α
j
t = GP (cp). As in Khan, King, and Wolman (2003), but extended as in Lie (2010) to

allow for state-dependent pricing, an intermediate producer chooses the optimal price P 0t so that

v0t = max
P 0t

[
P 0t
Pt
− pwt

]
Y 0t + EtΛt,t+1β

(
α1t+1v

0
t+1 +

(
1− α1t+1

)
v1t+1

(
P 0t
Pt+1

))
(4)

−EtΛt,t+1βpwt+1α1t+1Ξ1,t+1,

where

Y j
t =

(
P jt
Pt

)−σ
Yt, (5)

where Pt is the aggregate price level, β the discount factor and Λt,t+1 the ratio of Lagrange multipliers

in the problem of the consumer tomorrow and today (i.e., relative value of consumption today versus
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tomorrow). The values vjt evolve according to

vjt

(
P jt
Pt

)
=

[
P jt
Pt
− pwt

]
Y j
t + EtΛt,t+1β

(
αj+1t+1v

0
t+1 +

(
1− αj+1t+1

)
vj+1t+1

(
P jt
Pt+1

))
(6)

−EtΛt,t+1βpwt+1α
j+1
t+1Ξj+1,t+1,

vJ−1t

(
P J−1t

Pt

)
=

[
P J−1t

Pt
− pwt

]
Y J−1
t + EtΛt,t+1βv

0
t+1 − EtΛt,t+1βpwt+1ΞJ,t+1.

Note that the term within the square brackets is just the firm’s per unit profit in period t+ k, given that

prices were last reset in period t.

The first-order condition to the problem (4) is

[
(1− σ)

P 0t
Pt

+ σpwt

]
Y 0t

1

Pt
+ EtΛt,t+1β

((
1− α1t+1

)
D1v

1
t

(
P 0t
Pt+1

)
1

Pt+1

)
= 0, (7)

where, noting that P jt+j = P 0t , the derivative D1v
1
t can be computed by using

D1v
j
t

(
P jt
Pt

)
=

[
(1− σ)

P jt
Pt

+ σpwt

]
Y j
t

Pt
+ EtΛt,t+1β

((
1− αj+1t+1

)
D1v

j+1
t+1

(
P jt
Pt+1

)
1

Pt+1

)
,

D1v
J−1
t

(
P J−1t

Pt

)
=

[
(1− σ)

P J−1t

Pt
+ σpwt

]
Y J−1
t

Pt
. (8)

Thus, optimal pricing behavior is fully characterized by expressions (7) and (8).

We model price adjustment probabilities as in Dotsey, King, and Wolman (1999) and others. Thus,

adjustment probabilities are chosen endogenously by the firm and is one if cp <
v0t−v

j
t

pwt
and zero if cp >

v0t−v
j
t

pwt
. Adjustment costs are drawn from a cumulative distribution function GP and the share of firms

among those that last adjusted the price j periods ago that adjusts the price today is given by

αjt = GP

(
v0t − v

j
t

pwt

)
. (9)

Moreover the shares of firms with duration j since the last price change is denoted by ωjt . For j ≥ 1 we

have

ωjt =
(

1− αjt
)
ωj−1t−1 , (10)

and, for j = 0,

ω0t =
J−1∑
j=1

αjtω
j−1
t−1 . (11)
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Assume that GP follows a beta distribution, i.e., the probability density is gP = 1
β(lp+1,rp+1)

xlp (1− x)rp .

2.3 Households

Households have preferences

Et
∞∑
r=t
βr−t

[
u (cr) + nrκ

L

(
1− h̄− hcr

)1−φ
1− φ + (1− nr)κL

(1− hcr)
1−φ

1− φ

]
, (12)

where h̄ denotes the workers’ hours worked at a wholesale firm, ct consumption, n
jw
t the number of

employees in wage cohort jw and nt aggregate employment. Wealth accumulation of the family is given

by

Mt +
Bt+1
Rt

+ θt+1 (Ft − Zt) ≥ θtFt +Bt −Dt +Wt, (13)

where Pt is the price level, Mt is money holdings and, Bt bonds, θt+1 is the share of intermediate product

firms, Ft the value of firms (measured on a pre-dividend basis Ft − Zt)8 and Zt nominal dividends, $t is

wealth at the start of time t, Rt is the one period nominal interest rate, bt denotes one period nominal

bonds and where

Wt =

∫ 1

0
EtWitdi+ (1− nt) br − Tt, (14)

with br representing the value of home production. Moreover, Wit denotes the households nominal wage

and Tt lump-sum taxes. Each family own an equal share of all firms and of the aggregate capital stock.

Finally, note that 1 − nt is equal to the unemployment rate. In real term, letting mt = Mt
Pt
denote real

money balances, bt real bond holdings, ft and zt the real value of the firm and dividends, respectively,

wealth accumulation is

mt +
bt+1
Rt

+ θt+1 (ft − zt) ≥ θtft +
bt

1 + πt
− dt

1 + πt
+
Wt

Pt
. (15)

Agents purchases goods using either money or credit. Using credit requires paying a stochastic fixed

time cost. This cost is good-specific and is realized after the family has decided on the amount of a

product to buy but before choosing between credit or money as means of payment. Here, credit is defined

as a one-period interest rate free loan that needs to be repaid in full the next period. Families then choose

to use credit as long as the gain, Rtct, is larger than the cost of credit.9 Letting ξt denote the fraction

8Note that the net cost of buying a unit of claims is Ft − Zt.
9That is, the real discounted net gain of placing the transaction amount in a bond for a period and repay the transaction
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of goods purchased using credit, we have dt+1 = ξtp̄tct where p̄t is the price of the consumption good.

Furthermore,

mt = (1− ξt) p̄tct. (16)

The family’s first-order conditions with respect to ct and ξt are, using that p̄t = (1 +Rt),

ct : uc (ct) = λt (1 +Rt (1− ξt)) (17)

ξt : λtRtct =
[
ntκ

L
(
1− h̄− hct

)φ
+ (1− nt)κL (1− hct)

φ
]
F−1 (ξt) ,

where F−1 (ξt) is the realization of the credit cost in terms of time.

Using the envelope theorem and the first-order condition with respect to bt we can write the household

Euler equation as
λt
Rt

= βEt
λt+1

1 + πt+1
. (18)

2.4 Search and matching

In each period wholesale firm i post vit vacancies and employs nit workers. The aggregate number of

vacancies is denoted vt is and aggregate employment is denoted nt.As in Christoffel, Kuester, and Linzert

(2009), the number of unemployed workers is

ut = 1− nt. (19)

We assume that the number of matches mt is given by the following constant-returns matching function

ma
t = σmu

σa
t v

1−σa
t , (20)

where ut is unemployment and vt the number of vacancies. The probability that a worker is matched to

a firm

sat =
ma
t

ut
, (21)

and the probability that a vacancy is filled is

qt =
ma
t

vt
. (22)

amount the next period. To see this, combine the first-order condition with respect to ξ (17) together with the Euler equation
(18), below.
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Finally, a match is broken with probability 1− ρ.

2.5 Wage determination

In the model, the parties bargain every period. Each bargaining round starts with one of the parties

making a bid, then the other party responds yes or no. If the response is no, there is a choice whether to

continue bargaining in good faith and post a counter offer or enter into disagreement. If the latter choice

is made, there is a probability that the match breaks down and the wage is determined in a standard

Rubinstein-Ståhl fashion. Moreover, in case a party initiate bargaining under disagreement, both parties

face their own known fixed disagreement cost (randomly drawn at the beginning of each period). As in

Holden (1994), this cost may be due to deteriorating firm/worker and customer relationships. In case

none of the parties chooses to bargain under disagreement, but are unable to settle on a new wage, work

continues according to the old contract. If the disagreement cost is suffi ciently high, it is not credible for

a party to threaten with disagreement in order to achieve a new wage contract. Instead, the outcome

will be to continue to work according to the old contract already in place, and the model thus generates

nominal wage rigidities as a rational endogenous outcome.

Note that there is no disagreement in equilibrium, and hence the equilibrium disagreement costs is zero.

Thus, in contrast to price adjustment costs, this cost neither enter resource constraints nor firm/worker

value functions. Moreover, this cost is of no direct concern to the planner, although it affects the optimal

solution indirectly through its impact on private sector behavior.

Wholesale firms bargains with workers with some positive probability αjwt in the jw’th period fol-

lowing the last renegotiation. Though, in the model at hand, these probabilities are endogenous. Wage

adjustment probabilities are given by αjwt with αJwt = 1 for some Jw > 1. In the model, these adjustment

probabilities may depend on whether wages increase or decrease.

2.6 Value functions

The wholesale firm i use capital kit and labor hit as inputs to produce output yit using a constant returns

technology

yit = aithit. (23)

where ait = eγrtεait with γr being the growth of technology and ε
a
it an idiosyncratic shock. Also, let A de-

note the set of productivity levels. For simplicity, however, we will suppress the idiosyncratic productivity

dimension in the notation in what follows.
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The value for the family of a worker at wholesale firm i is in period t is, letting ϑ (at+1, at) denote the

transition probability from productivity state at to at+1,

V jw
t

(
wjwt , at

)
= wjwt h̄+ κL

(
1− h̄− hcr

)1−φ
1− φ + β

∑
at+1∈A

EtΛt,t+1ϑ (at+1, at)

×
[(
ραjw+1t+1

(
wjw+1t+1 , at+1

)
V 0t+1

(
w0t+1, at+1

)
+ (1− ρ)Ut+1

)
(24)

+
(
ρ
(

1− αjw+1t+1

(
wjw+1t+1 , at+1

))
V jw+1
t+1

(
wjw+1t+1 , at+1

)
+ (1− ρ)Ut+1

)]
,

where wjwt =
W jw
t
Pt

is the real wage and h̄ hours that are fixed. The value when being unemployed is

Ut = br + κL
(1− hcr)

1−φ

1− φ + βEtΛt,t+1
(
sat+1Vx,t+1 +

(
1− sat+1

)
Ut+1

)
. (25)

In the model, we let the share of new hires that get a rebargained wage be a free parameter. Thus, letting

ωjwt

(
wjw+1t+1 , at

)
denote the share of workers with wage wjwt and productivity at, we have

Vx,t = snew
∑
at∈A

ωerg (at+1)V
0
t

(
w0t , at

)
(26)

+ (1− snew)

Jw−1∑
jw=0

∑
at∈A

ωjwt

(
wjw+1t+1 , at

)
V jw
t

(
wjwt , at

)
,

is the average value of employment an snew is the share getting new rebargained wages. Then the

bargaining surplus (defined by jw = 0) for the worker is, as usual in bargaining models with a probability

of match breakdown, given by the difference between the value of employment and unemployment

Hjw
t

(
wjwt , at

)
= V jw

t

(
wjwt , at

)
− Ut, (27)

and hence, the value of an additional employee for the household can then be written as

Hjw
t

(
wjwt , at

)
= wjwt h̄+ κL

(
1− h̄− hcr

)1−φ
1− φ − br − κL

(1− hcr)
1−φ

1− φ + β
∑

at+1∈A
EtΛt,t+1ϑ (at+1, at)

×
[(
ραjw+1t+1

(
wjw+1t+1 , at+1

)
H0
t+1

(
w0t+1, at+1

)
− sat+1Hx,t+1

)
(28)

+
(
ρ
(

1− αjw+1t+1

(
wjw+1t+1 , at+1

))
Hjw+1
t+1

(
wjw+1t+1 , at+1

)
− sat+1Hx,t+1

)]
.
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where

Hx,t = Vx,t − Ut.

For the firm wholesale firm, the value of an additional employee is

J jwt

(
wjwt , at

)
= pwt ath̄− w

jw
t h̄

+β
∑

at+1∈A
Λt,t+1ϑ (at+1, at)α

jw+1
t+1

(
wjw+1t+1 , at+1

) (
ρJ0t+1

(
w0t+1, at+1

))
(29)

+β
∑

at+1∈A
Λt,t+1ϑ (at+1, at)

(
1− αjw+1t+1

(
wjw+1t+1 , at+1

))
ρJ jw+1t+1

(
wjw+1t+1 , at+1

)
.

A firm that last renegotiated wages j periods ago can credibly disagree if the gain from adjusting the

wage

dJ jwt

(
wjwt , at

)
= J0t

(
w0t , at

)
− J jwt

(
wjwt , at

)
,

is larger that the disagreement cost. Similarly, the worker disagree if

dHjw
(
wjwt , at

)
= H0

t

(
w0t , at

)
−Hjw

t

(
wjwt , at

)
,

is larger that the workers disagreement cost.

Wage determination Wages are determined in bargaining between firms and the household member

employed by the firm. Akin to Holden (1994), if it is not credible to threaten with disagreement the parties

settle on the previous periods wage. If it is credible to threaten with disagreement the wage is determined

in a standard Rubinstein-Ståhl barging game. Since there is equivalence between the standard non-

cooperative approach in Rubinstein (1982) and the Nash bargaining approach, we use the latter method.

The nominal wage W 0
it is then chosen such that is solves the following problem

max
W 0
it

(
H0
t

(
w0t , at

))ϕ (
J0t
(
w0t , at

))1−ϕ
, (30)

and ϕ denotes the bargaining power of workers. The first-order condition with respect to the nominal

wage W 0
it corresponding to (30) is

ϕJ0t
(
w0t , at

)
DWH

0
t

(
w0t , at

)
+ (1− ϕ)H0

t

(
w0t , at

)
DWJ

0
t

(
w0t , at

)
= 0, (31)

where DWH
0
t

(
w0t , at

)
and DWJ

0
t

(
w0t , at

)
are computed using expressions (28) and (29).
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2.6.1 Adjustment probabilities

The disagreement costs for the firm follow the cumulative distribution function GJ : [0,BJ ] → [0, 1] and

the disagreement cost of workers follow the cumulative distribution function GH : [0,BH ] → [0, 1] with

upper bounds BJ and BH , respectively. The adjustment probabilities are given by

αjwt

(
wjwt , at

)
, (32)

and depend on both GJ
(
dJ jwt

(
wjwt , at

))
and GH

(
dHjw

t

(
wjwt , at

))
. A detailed description on how there

are computed are given in the appendix.

2.6.2 The hiring decision and employment flows

Firms chooses it’s hiring so that the hiring cost of an additional employee is equal to the value. Thus,

letting qt =
mat
vt
denote the probability of filling a vacancy, hiring is determined by

κt = snewqtβ
∑

at+1∈A
EtΛt,t+1ω

erg (at+1) J
0
t+1

(
w0t+1, at+1

)
(33)

+ (1− snew) qtβ

Jw−1∑
jw=0

∑
at+1∈A

Etω
jw+1
t+1

(
wjwt+1, at+1

)
Λt,t+1J

jw
t+1

(
wjwt+1, at+1

)
,

where the expectation is taken across all firms, ωerg (at+1) is the (ergodic) probability of entering in cohort

at+1, ω
jw
t is the share in cohort jw in period t with productivity at+1 and wage w

jw
t+1. Below, we both

analyze the case when snew is calibrated according to empirical evidence and when wages for new hires

are fully flexible.

Since there has been a significant controversy in the literature whether the wages of newly hired

workers are more flexible than for incumbent workers, we find it important to motivate this assumption.

Micro-data studies, summarized in Pissarides (2009), seem to indicate that newly hired workers wages

are substantially more flexible than incumbents wages. However, answering the question wether new-

comers wages are more cyclical than incumbents wages is associated with severe identification problems.

Especially, the studies summarized in Pissarides (2009) generally fail to control for effects stemming from

variations in the composition of firms and match quality over the cycle. It might thus be that the empiri-

cal evidence just reflect that workers move from low wage firms (low quality matches) to high wage firms

(high quality matches) in boom periods and vice versa in recessions. The approach taken by e.g. Gertler

and Trigari (2009) to address this issue is introduce a job-specific fixed effects in a regression of individual

13



wages on the unemployment rate and the interaction of the unemployment rate and dummy variable

indicating if the tenure of the worker is short. This should control for composition effects in workers,

firms and match quality. The problem, however, is that the interaction effect is then only identified with

the within-match variation. It answers the question wether wages for workers with short tenure responds

more to cyclical factors than wages for workers with longer tenure after that the worker has already been

hired. Albeit an interesting question in itself, it is not the question at hand. Thus, existing micro-data

studies can only takes us so far. If we instead turn to survey evidence, like Bewley (1999), Bewley (2007)

for the U.S. and the study performed within the Eurosystem Wage Dynamics Network (WDN) covering

about 17, 000 firms in 17 European countries, we see strong evidence of that the wages of new hires are

tightly linked to those of incumbents. As reported by Galuscak et al., 2010, about 80% percent of the

firms in the WDN survey respond that internal factors (like the internal pay structure) are the more

important factor driving wages of new hires rather than external or market conditions. Finally, turning

to the macro evidence, De Walque, 2009, develops a DSGE model that allows for a separate analysis of

the flexibility of new and incumbent workers wages via different probabilities of being able to negotiate

the wage. Estimates of this model relying on the European AWM database (presented in the final report

of the WDN; see Several (2009)), indicate that new hires negotiate their wage in the same proportion as

incumbents, in line with the survey evidence. Thus, all in all, we view the assumption underlying (33) as

the natural baseline. However, we also explore the implications of modeling new hires wages as perfectly

flexible.

Finally, the employment flow between categories njwt is given by

n0t (at) =

Jw∑
jw=1

∑
at−1∈A

ϑ (at, at−1) ρα
jw−1
t−1

(
wjw−1t−1 , at−1

)
njw−1t−1 (at−1)+

(
snewωerg (at) + (1− snew)

n0t (at)

n

)
ma
t ,

(34)

and, for jw > 0,

njwt (at) =
∑

at−1∈A
ϑ (at, at−1) ρ

(
1− αjw−1t−1

(
wjw−1t−1 , at−1

))
njw−1t−1 (at−1) + (1− snew)

njwt (at)

n
ma
t . (35)

3 Policy

We model policy in two ways. First, we analyze the model when policy is governed by a Taylor rule

Rt
R̄

=
(πt
π̄

)rπ (yet
ȳe

)ry
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where yet denotes output in effi ciency units.

Second, we solve for the optimal policy. In the model we have several distortions. First, there is

imperfect competition in the product market. There is also a distortion due to transactions costs in the

final goods market. Furthermore, there are relative price and relative wage distortions. Finally, there are

distortions in the hiring decision on the labor market.

The policymaker maximizes (12) subject to the constraints (7), (8), (18) the resource constraint,

equating supply with demand10

J−1∑
j=0

ωjty
j
t −

J−1∑
j=0

ωjtα
j
tΞj,t =

J−1∑
j=0

ωjt

(
pjt

)−σ
[ct +ma

t vt − (1− nt) bt] , (36)

the flow equation of prices

pjt =
pj−1t−1

1 + πt
, (37)

expressions (2), (4), (6), (9), (17), (19), (21), (28), (29), (31), (32), (33), (34), (35) and the flow equation

of wages

wjt =
wj−1t−1
1 + πt

. (38)

4 Calibration

For our numerical exercises, we assume that u (ct) = log ct. The calibration of the deep parameters are

presented in Table 2. We set the quarterly discount factor to 0.9945 and average quarterly productiv-

ity growth to 1.0043 to generate a real interest rate of 4%. To model the idiosyncratic productivity

process, we use a three-state Markov chain with a ratio between the min and the max state of 0.54.

The value of br implies a replacement rate (the ratio of home production value to the average wage)

of around 0.6 We set the bargaining power to ϕ = 0.5 implying symmetrical bargaining. For the job

separation rate 1 − ρ, we follow Gertler, Sala, and Trigari (2008) and set ρ = 0.895. The values for the

parameters in the credit cost distribution is taken from Lie (2010). We assume that the distribution of

menu costs in price setting follow the beta distribution with parameters as in Lie (2010), i.e., letting

gP = 1
β(l,r)x

l−1 (1− x)r−1 denote the probability density function we have l = 2.1, r = 1.0 and upper

10Note that, since adjustment costs is in terms of aggregate output, the left-hand side is total output, net of these costs.

The right-hand side consists of the weighted sum across firm demand
(
pjt
)−σ

ydt with

ydt = ct +ma
t vt − (1− nt) br.

See Christoffel, Kuester, and Linzert (2009).
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Table 1: Baseline Calibration of the Model
Parameters

β 0.9945 br 0.35
σ 10 ρ 0.9
φ 1 σa 0.6
ϕ 0.5 σµ 0.37
ε̄a 1.0043 h̄ 0.2
ρa 0.95 κ 0.024
κL 1.27 rπ 1.5
ry 0.1 snew 0

bound 0.015. The disagreement costs for firms and workers when bargaining over wages also follow the

beta distribution gH = 1
β(lH ,rH)

xlH−1 (1− x)rH−1 for workers and gJ = 1
β(lJ ,rJ )

xlJ−1 (1− x)rJ−1 for firms.

We set lH = 1.6, rH = 1 and lJ = 1.6, rJ = 1.

To find the bounds of the distribution, we fit the dispersion of yearly wage changes in the model

(given the yearly average inflation rate of 2.56% during the period 1993−1997) to the (average) empirical

dispersion of yearly wage changes in the US during the period 1993 − 1997 using a minimum distance

estimator.11 The time period is chosen since it represents a period with stable inflation close to two

percent. This procedure yields parameters BH = 0.1075 for and for firms BJ = 0.3004. When imposing

a symmetry restriction, we find the upper bounds to equal BH = BJ = 0.1507. Moreover, the maximum

length of a wage (price) contract is set to 6 (9) quarters.12

Figure 1 (2) illustrates the model (empirical) distribution of nominal wage changes for stayers. Comparing

the two figures, we see that the model captures key features of the empirical wage distribution fairly well.

For example, the spike at zero nominal wage change and the peak around 5 % as well as the absence of

any substantial mass on nominal wage cuts.

5 Results

In figure 3, we plot the dynamics of the model when policy is governed by a Taylor rule.13 We first

plot the response of output and inflation to a one and three standard deviation (positive and negative)

11The micro data on wages is collected from the the Panel Study of Income Dynamics and is corrected from measurement
errors as described by Dickens et. al., 2007?.
12The difference in contract length between prices and wages is due to the increase in the computational burden of increasing

the maximum length of wage contracts.
13When dynamics are computed adjustment probabilities are restricted to be striclty interior by using an approximation

of a step function.
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Figure 1: The nominal wage change distribution implied by the model.
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Figure 2: Empirical distribution of nominal wage changes in the US during the period 1993-1997
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Figure 3: Impulse responses for inflation and productivity to a productivity shock.

productivity shock, respectively. To get a better idea of the difference between positive and negative

shocks, we mirror the negative shock through the x-axis.

The difference in the output response between negative and positive shocks is fairly small, although it

is slightly bigger for the three standard deviation shock. The response of inflation is bigger, especially in

the three standard deviation case, where the impact response of a negative shock is almost twice as large

as for a positive shock.

5.1 The Long-run Phillips Curve

In the model, there is a long-run trade-off between inflation and output, i.e., the Long-run Phillips curve

has a positive slope. Inflation erodes wages that don’t change, in turn increasing vacancy creation and

affecting output. Figure 4 below illustrates how output varies with inflation, depending on the symmetry

of wage adjustment.

With productivity growth, the slope of the long-run Phillips curve is about the same with symmetric

and asymmetric wage frictions. On the other hand, without productivity growth, the slope of the long-run

Phillips curve is flatter with asymmetric wage frictions.
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Figure 4: The Long-run Phillips curve

5.2 Optimal Inflation

The trade-offbetween output and inflation indicated in figure 4 indicates that the planner can use inflation

to affect welfare. Specifically, since the Hosios condition need not hold, the planner can use inflation to

affect wages and in turn reduce ineffi ciencies due to search and matching frictions; for a detailed discussion

see Carlsson and Westermark (2012).

To analyze the effects of downward nominal wage rigidity, we compare the optimal inflation rate to

the optimal rate in a model where these rigidities are not present. Moreover, it is interesting to try to

distinguish between the effects of just adding (symmetric) wage setting frictions from the effect of adding

asymmetries, i.e., downward nominal wage rigidity. We do this by also looking at third model; a model

with sticky wages but symmetric adjustment probabilities (averaging parameters of the two disagreement

cost distributions). Finally, we analyze the case with flexible wages for new entrants.

Table 2: Yearly optimal inflation rate under the Ramsey policy
Asymmetric wage frictions Symmetric wage frictions Flexible wages

Baseline 0.77 0.28 −0.60
Zero productivity growth 1.69 1.02 −0.13
snew = 0.5, growth 0.14 −0.11 −0.60
snew = 0.5, no growth 0.93 0.51 −0.13
Flex wages for new hires −0.52 −0.60 −0.60

We find that the optimal annual inflation rate under downward nominal wage rigidities is about 0.8%
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in the baseline calibration. The optimal annual inflation rate found here is larger than in the baseline

monetary models discussed in Schmitt-Grohe and Uribe (2010) where the optimal inflation rate is at most

around zero. The difference between the optimal inflation rate under downward nominal wage rigidities

with a model where wage frictions are symmetric is almost 0.5%. When looking at a model without

productivity growth, the difference is substantial, with the optimal inflation rate under downward nominal

wage rigidities being almost a percentage point larger than in the model with productivity growth. Also,

the difference between asymmetric and symmetric wage frictions increases a little, to about 0.7%.

The increase in inflation relative to a model with flexible wages and price adjustment frictions is

slightly above one percentage unit. The introduction of downward nominal wage rigidities into a model

with flexible wages can be decomposed into two effects. First, wage adjustment frictions are introduced

and second, the frictions become asymmetric. The effects of introducing wage adjustment frictions stands

for slightly more than half of the entire inflation effect when there is productivity growth. Asymmetric

frictions increases inflation by about 0.5%. On the other hand, without productivity growth, introducing

symmetric wage frictions increases inflation by about 1.1% and asymmetric wage frictions increases infla-

tion by an additional 0.7%. Thus, introducing productivity growth leads to a somewhat smaller effect on

inflation of introducing downward nominal wage rigidities. The reason is that productivity growth gives

a similar effect; given that wages are nominally fixed, productivity growth decreases the real marginal

costs for firms pay, making it less important to use inflation to erode wages. 14

Next, we experiment by letting newly hired workers become flexible. We then find an optimal annual

deflation rate of around 0.5%. Thus the treatment of the wage flexibility of newly hired workers has an

impact on the optimal policy prescription.

6 Concluding Discussion

We develop a DSGE model where there is a role for money as a medium of exchange, as well as, when

declining nominal wages might not be a viable margin for adjustment. To capture the Friedman argument,

we introduce a transaction cost (as in Schmitt-Grohe and Uribe (2004)). To include the Tobin argument,

we introduce price- and wage-setting friction. Since our ultimate aim is to study the optimal inflation

rate, it is important to allow optimal price- and wage-setting decision to depend on the inflation rate.

To this end, both price and wage decisions are modeled as state dependent. Price-setting frictions are

14Note that the result for flexible wages is very much in line with Lie (2010).
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introduce as in Dotsey, King, and Wolman (1999)). Wage setting is based on the bargaining model in

Holden (1994), where downward nominal wage rigidities can arise as a rational outcome. Finally, the

model feature a search-matching labor market akin to the model of Christoffel, Kuester, and Linzert

(2009). To parametrize the distribution of wage adjustment costs in the model, we use a minimum-

distance estimation approach to match the nominal wage change distribution implied by the model to

the empirical nominal wage change distribution observed in U.S. micro data. The estimated model yields

a distribution of wage changes that captures the overall shape of the empirical wage distribution. An

important feature that allows the model to fit the data with any precision, is the introduction of firm-level

heterogeneity in terms of productivity, as well as, aggregate productivity growth.

The model response of output to a productivity shock is fairly symmetric, while the response of

inflation displays larger asymmetries, with a bigger response for negative shock, especially when shocks

are large. Furthermore, we establish the existence of an upward-sloping Long-run Phillips curve. The

reason for this is that an increase in inflation leads to a larger erosion of nominal wages and hence lower

real wages, in turn increasing vacancy creation, employment and output.

We find that the optimal annual rate under downward nominal wage rigidities is 0.8%. The optimal

annual inflation rate found here is larger than in the baseline monetary models discussed in Schmitt-

Grohe and Uribe (2010) where the optimal inflation rate is at most around zero. The effect of introducing

asymmetric wage adjustment frictions is small, though; with symmetric frictions, the optimal inflation rate

is about 0.3%. Without productivity growth, the result changes substantially. Then the optimal inflation

rate with symmetric frictions is about 1.0%, while the rate is about 1.7% under downward nominal wage

rigidities. Thus, allowing for productivity growth substantially reduces the optimal inflation rate and

also mitigates the effect of downward nominal wage rigidities. The reason is that productivity growth

can perform the same effect of inflation; erosion of real marginal costs. However, we also show that the

flexibility of the wage formation has an effect on this conclusion. Letting new hires wages to be perfectly

flexible leads to an optimal annual deflation rate of around 0.5%..
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Appendix
This appendix briefly describes wage adjustment probabilities and the optimal policy problem stated

in section 3. For detailed derivations, see the accompanying technical appendix.

A Wage Adjustment Probabilities

The fraction of firms that disagree is

1 if BJ<dJ jwt
(
wjwt , at

)
,

GJ
(
dJ jwt

(
wjwt , at

))
0 ≤ dJ jwt

(
wjwt , at

)
≤ BJ ,

0 dJ jwt

(
wjwt , at

)
< 0.

Similarly, the fraction of workers that has an incentive to disagree to force a renegotiation of the wage

contract is
1 if BH<dHjw

t

(
wjwt , at

)
,

GH
(
Hjw
t

(
wjwt , at

))
0 ≤ dHjw

t

(
wjwt , at

)
≤ BH ,

0 dHjw
t

(
wjwt , at

)
< 0.

The adjustment probabilities are then

αjwt

(
wjwt , at

)
= 1.

if if BJ<dJ jwt
(
wjwt , at

)
or if BH<dHjw

t

(
wjwt , at

)
,

αjwt

(
wjwt , at

)
= GJ

(
dJ jwt

(
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))
+GH

(
dHjw

t

(
wjwt , at

))
−GH

(
dHjw

t

(
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))
GJ
(
dJ jwt

(
wjwt , at

))
,

if 0 ≤ dJ jwt
(
wjwt , at

)
≤ BJ and 0 ≤ dHjw

t

(
wjwt , at

)
≤ BH ,

αjwt

(
wjwt , at

)
= GJ

(
dJ jwt

(
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,

if 0 ≤ dJ jwt
(
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)
≤ BJ and dHjw

t

(
wjwt , at

)
< 0,

αjwt

(
wjwt , at

)
= GH

(
dHjw

t

(
wjwt , at

))
,

if dJ jwt
(
wjwt , at

)
< 0 and 0 ≤ dHjw

t

(
wjwt , at

)
≤ BH and zero otherwise.
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