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1 Introduction

Heterogeneous agent models have become an extensively used tool in macroeconomics for the study

and evaluation of the welfare implications and desirability of business cycle stabilization policies.

They have also been used to address questions related to social security reforms, the precautionary

savings behavior of agents, employment mobility and wealth inequality. A comprehensive review

on the developments made in the field during the last two decades can be found in Ŕıos-Rull

(1995, 2001) and Heathcote et al. (2009). These models extend the standard representative agent

framework, introduced in Kydland and Prescott (1982), by bringing forward different types of het-

erogeneity across households and firms that has allowed for a change of focus in macroeconomics

from the analysis of average values to the study of the entire distribution of economic aggregates.

Currently, the main workhorse in the heterogeneous agent literature is based on the contribu-

tions of Bewley (Undated), Huggett (1993) and Aiyagari (1994). Their theories are motivated by

the empirical observation that individual earnings, savings, wealth and labor exhibit much larger

fluctuations over time than per-capita averages, and accordingly significant individual mobility is

hidden within the cross-sectional distributions. These ideas have been formalized with the use

of general equilibrium, dynamic and stochastic models of a large number of rational consumers

that are subject to idiosyncratic income fluctuations against which they cannot fully insure due to

market incompleteness. The individual choices of agents determine the aggregate amount of capi-

tal stock and effective labor supplied for production which combined with their optimal demands

determine the general equilibrium prices that clear the markets in the whole economy.

To date, calibration is the standard methodology used to examine the quantitative properties of

these models. This procedure fixes the value of the model parameters to those encountered in exter-

nal sources, e.g. from studies that rely on micro data or cross-sectional observations on individual

allocations, or from long-run averages of macroeconomic aggregates. In general, calibrated models,

as opposed to statistically estimated models, can not make statements regarding the uncertainty

surrounding the values used, their statistical significance and how well the models fit the data.

One possible explanation of why these models have not yet been statistically estimated is that

their solution imposes a computational burden that makes any econometric procedure infeasible. It

is a well known fact that the numerical approximation of the density function of the state variables

of the model increases considerably the computing time of the model’s solution. However, recent

advances in continuous-time heterogeneous agent modeling have proven successful in reducing this

computational complexities making possible the implementation of standard econometric methods

to extract information from observed data.

Despite calibration being very illustrative for the study of any model’s dynamics, the use of

econometric methods provide some important advantages by allowing: (i) to impose on the data
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the restrictions arising from the economic theory associated with a particular model; (ii) to assess

the uncertainty surrounding the parameter values which ultimately provides a framework for hy-

pothesis testing, (iii) the use of standard tools of models selection and evaluation. However, little

has been done in this regard within the heterogeneous agents framework with the exception of the

recent work of Kirkby (2014) for the type of household heterogeneity considered in this chapter,

and the structural estimation of search and matching models applied to labor economics carried

out in Postel-Vinay and Robin (2002), Flinn (2006), Cahuc et al. (2006) and Launov and Wälde

(2013). A more exhaustive list of examples can be found in the recent book by Wolpin (2013).

The first contribution of this paper is to take a step in this direction by introducing a sim-

ple framework to estimate the structural parameters of heterogeneous agent models by using the

information content in the cross-sectional distribution of wealth. The approach is based on the

economy-wide stationary probability density function which can be later used to derive the like-

lihood function of the model. Our framework belongs to the class of full information estimators

since it uses all the restrictions imposed by the economic model through the density function.

The computation of the probability density function of wealth in heterogeneous agent models is

not straightforward as it turns out to be a complicated endogenous and non-linear object that usu-

ally has to be numerically approximated. For continuous-time setups, Bayer and Wälde (2010b,a,

2011, 2013), Achdou et al. (2014a) and Gabaix et al. (2015) have recently suggested the use of

Fokker-Planck equations for the derivation and analysis of endogenous distributions in macroeco-

nomics1. These partial differential equations describe the entire dynamics of any probability density

function in a very general manner without the need to impose particular functional forms and for

which analytical solutions can be found. When combined with the standard Hamilton-Jacobi-

Bellman equation that describes the optimal behavior of economic agents, they form a system of

coupled partial differential equations, termed Mean-Field game following the work of Lasry and

Lions (2007), that can be numerically solved with high degree of accuracy and efficiency on the

entire state-space of the model using the finite difference methods described in Candler (1999) and

Achdou et al. (2014b).

To illustrate our approach we make use of a continuous-time version of a Bewley-Hugget-

Aiyagari model in which a large number of households face idiosyncratic and uninsurable income

risk in the form of exogenous shocks to their productivity modeled through a Poisson process with

two states. In our economy, households make rational and independent consumption and saving

decisions taken the aggregate prices as given. When aggregated, their individual choices define the

aggregate labor and capital stock supplied to a representative firm that produces the only good in

the economy. The interaction between demand and supply determine the prices of the production

1The Fokker-Planck equations are also often called Kolmogorov Forward equations and both terms are equally
used in the economic literature.
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factors that clear the markets. At this stage, we do not consider the effects of aggregate uncertainty,

but we hope to study them in future research.

The prototype economy is then solved for the stationary competitive equilibrium which is char-

acterized by a time-invariant distribution of wealth and aggregate variables that do not grow over

time. For a given set of parameter values this solution defines the true distribution of wealth from

which we can simulate multiple samples of i.i.d. observations by randomly drawing from the approx-

imated probability density function of wealth. These samples are later used for the construction of

the likelihood function that define our econometric framework.

A well established condition for the maximum likelihood estimator to deliver consistent esti-

mates of the model parameters and a valid asymptotic inference is that of identification (See Newey

and McFadden, 1986). Roughly speaking, identification refers to the fact that the estimator’s ob-

jective function must have a unique maximum at the true parameter vector and at the same time

display enough curvature in all its dimensions. Lack of identification leads to misleading statistical

inference, suggesting the existence of some features in the data that are actually absent. Therefore,

it is important to verify the identification condition prior to the application of any estimation strat-

egy. The recent contributions of Canova and Sala (2009), Iskrev (2010b), Komunjer and Ng (2011)

and Ŕıos-Rull et al. (2012) point out in that direction by providing tools that help to check the iden-

tifiability of structural parameters in the context of linearized representative agent DSGE models.

The second contribution of this paper is to investigate whether it is possible, and to what extent,

to (locally) identify the structural parameters of heterogeneous agent models in a likelihood-based

framework when the only available information to the econometrician is a cross-sectional sample

of individual wealth. Given that the mapping between the deep parameters of the model and the

estimator’s objective function is highly nonlinear and not available in closed form, we assess the

identification power of the likelihood function in an indirect way by using some of the simulation and

graphical diagnostics proposed in Canova and Sala (2009). The identification analysis is carried out

on both the population and the sample objective function. We finally investigate the small sample

properties of the maximum likelihood estimator and their relation to the identification condition.

The remainder of the paper is organized as follows. Section 2 introduces a prototype hetero-

geneous agent model, defines the stationary competitive equilibrium and describes the numerical

algorithms used to: (i) compute the steady state equilibrium at the macro level, and (ii) globally ap-

proximate both the solution to the households saving-consumption problem, and the distribution of

wealth. Section 3 shows how to use the solution of the economic model to derive a likelihood function

that can be used to estimate the parameters of the model by exploiting the information content in

the cross-sectional distribution of individual wealth. It also defines some of the main identification

problems that arise in heterogeneous agent models, and shows the close link that exists between an

estimator’s objective function and its identification power. Section 4 investigates the identifiability

3



of the model parameters in the population while Section 5 sets up a Monte Carlo experiment to

study the finite sample properties of the maximum likelihood estimator and the implications of the

resulting parameter estimates for macroeconomic analysis. Section 6 discusses the consequences,

in small samples, of following a mixed calibration-estimation strategy when it is believed a priori

that some of the model parameters are poorly identified. Finally, Section 7 concludes.

2 A prototypical heterogeneous agent model

For our study we consider a prototypical heterogeneous agent models á la Bewley-Hugget-Aiyagari

set up in continuous-time following Bayer and Wälde (2011), Bayer and Wälde (2013) and Achdou

et al. (2014b). In our economy there is no aggregate uncertainty and we assume that all aggre-

gate variables are in their steady state while at the individual level, households face idiosyncratic

uninsurable risk and variables change over time in a stochastic way.

2.1 Household’s problem

Consider an economy with a continuum of unit mass of infinitively lived households that are het-

erogeneous in their wealth and income and where decisions, are made continuously in time. Each

household consists of one agent, and we will speak of households and agents interchangeably. House-

hold i with i ∈ (0, 1) has standard preferences over streams of consumption, ct, defined by

U0 ≡ E0

∫ ∞
0

e−ρtu(ct)dt, u′ > 0, u′′ < 0, (1)

where ρ > 0 is the discount rate and the utility function is given by:

u (ct) =

{
c1−γt
1−γ for γ 6= 1

log (ct) for γ = 1
s

where γ > 0 denotes the coefficient of relative risk aversion. At time t = 0, the agent knows his

initial wealth and income levels and chooses the optimal path of consumption {ct}∞t=0 subject to

dat = (rat + wet − ct)dt, (a0, e0) ∈ [a,∞)× E (2)

where at denotes the household’s financial wealth per unit of time and r the interest rate. Wealth

increases if capital income rat plus labor income wet exceeds consumption ct. At every instant of

time, households face uninsurable idiosyncratic and exogenous shocks to their endowment of effi-

ciency labor units, et, as in Castañeda et al. (2003) making their labor income stochastic; w denotes

the wage rate per efficiency unit which is the same across households and determined in general

equilibrium together with the interest rate2. The fact that there are no private insurance markets for

the household specific endowment shock can be explained, for example, by the existence of private

2Alternatively, the efficiency levels can be understood as productivity shocks following Heer and Trede (2003).
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information on the employee side, like his real ability, that could give rise to adverse selection and

moral hazard problems. This would prevent private firms to provide insurance against income fluc-

tuations. However, the wealth accumulation process in Equation (2) creates a mechanism used by

agents to self-insure themselves against labor market shocks and allows for consumption smoothing.

Following Huggett (1993), the endowment of efficiency units can be either high, eh, or low,

el. The endowment process follows a continuous-time Markov Chain with state space E = {eh, el}
described by:

det = −Ξdq1,t + Ξdq2,t, Ξ ≡ eh − el and e0 ∈ E . (3)

The Poisson process q1,t counts the frequency with which an agent moves from a high to a

low efficiency level, while the Poisson process q2,t counts how often it moves from a low to a high

level. As an individual cannot move to a particular efficiency level while being in that same level,

the arrival rates of both stochastic processes are state dependent. Let φ1 (et) ≥ 0 and φ2 (et) ≥ 0

denote the demotion and promotion rates respectively, with3:

φ1(et) =

{
φlh et = eh
0 et = el

and

φ2(et) =

{
0 et = eh
φhl et = el.

Households in this economy can not run their wealth below a, where an ≤ a ≤ 0, and

an = −wtel/r defines the natural borrowing constraint implied by the non-negativity on consump-

tion. The effects of different values for a on the model implications are studied in Aiyagari (1994).

2.2 Production possibilities and macroeconomic identity

Aggregate output in this economy, Y , is produced by firms owned by the households. They com-

bine aggregate capital, K, and aggregate labor, L, through a constant return to scale production

function:

F (K,L) = KαL1−α, α ∈ (0, 1) .

in order to maximize their profits.

We further assume that the aggregate capital stock in the economy depreciates at a constant

rate, δ ≥ 0. Since our focus is on the steady state, all the investment decisions in the economy

are exclusively directed towards replacing any depreciated capital. Therefore the macroecomomic

identity:

Y = C + δK (4)

3The arrival rates of the Poisson processes allows us to compute the implicit transition probabilities between
states. Appendix C shows how to go from arrival rates to transition probabilities.
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holds at every instant of time, where C denotes aggregate consumption and δK is the aggregate

investment, and where we have removed the temporal subscript t from all aggregate variables to

indicate that the economy is in a stationary equilibrium.

2.3 Equilibrium

In this economy, households face uncertainty regarding their future efficiency endowment. This

makes their labor income and wealth also uncertain. Hence, the state of the economy at instant t

is characterized by the wealth-efficiency process (at, et) ∈ [a,∞)×E defined on a probability space

(Ω,F , G) with associated joint density function g (at, et, t).

As shown in Appendix A, the optimal behavior of each of the households in the economy can

be represented by the Hamilton-Jacobi-Bellman equation (HJB):

ρV (at, et) = max
ct∈R+

{
u(ct) + Va(at, et)(rat + wet − ct)

+(V (at, el)− V (at, eh))φ1(et) + (V (at, eh)− V (at, el))φ2(et)
}

(5)

for given values of r and w and where V (at, et) denotes the value function of the agent. The

first-order condition for an interior solution reads:

u′ (ct) = Va (at, et) , (6)

for any t ∈ [0,∞) making optimal consumption c?t = c(at, et) a function only of the states and inde-

pendent of calendar time, t. Equation (6) implies that in the optimum, the instantaneous increase

in utility due to marginally consuming more must be exactly equal to the increase in overall utility

due to an additional unit of wealth.

Due to the state dependence of the arrival rates in the endowments of efficiency, only one Pois-

son process will be active for each of the values in et. This leads to a bivariate system of maximized

HJB equations:

ρV (at, el) = u(c?t ) + Va(at, el)(rat + wel − c?t ) + (V (at, eh)− V (at, el))φhl, (7)

ρV (at, eh) = u(c?t ) + Va(at, eh)(rat + weh − c?t ) + (V (at, el)− V (at, eh))φlh. (8)

An interesting feature of our continuous-time setup as opposed to the discrete-time case, is that

Equation (6) holds for all at > a since the borrowing constraint never binds in the interior of the

state space. Therefore, the system of equations formed by (7) and (8) does not get affected by the

existence of the inequality constraint at ≥ a and instead gives rise to the following state-constraint

boundary condition (See Achdou et al., 2014b):

u′ (ra+ wet) > Va (a, et) . (9)
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It can be shown that Equation (9) implies that ra+wet− c(a, et) ≥ 0 and therefore the borrowing

constraint is never violated.

On the other hand, a representative firm rents capital and labor in competitive markets and

therefore production factors are paid their marginal product:

r = αKα−1L1−α − δ and w = (1− α)KαL−α (10)

where the aggregate capital is obtained by aggregating the wealth held by every type of household,

and similarly, aggregate labor is obtained by aggregating the efficiency labor units:

K =
∑

et∈{el,eh}

∞∫
a

atg (at, et) dat, (11)

L =
∑

et∈{el,eh}

∞∫
a

etg (at, et) dat. (12)

Equations (11) and (12) provide the link between the dynamics and randomness that occurs at the

micro level and the deterministic behavior at the macro level.

We consider a stationary equilibrium where aggregate variables and prices are constant, the

joint distribution of wealth and efficiency units is time-invariant and markets clear. More specifi-

cally, the distribution of wealth is constant for both the low and highly efficient workers, and the

number of low and highly efficient workers is constant, too. Nonetheless, the individual agents are

not characterized by constant wealth and efficiency status over time. In particular:

Definition 2.1 (Competitive stationary equilibrium) A competitive stationary equilibrium is

a pair of value functions V (at, el) and V (at, eh), individual policy functions for consumption

c (at, el) and c (at, eh), a time-invariant density of the state variables g (at, el) and g (at, eh), time-

invariant prices of labor and capital {w, r}, and a vector of aggregates {K,L,C} such that:

1. production factors satisfy Equations (11) and (12),

2. the consumption functions c (at, eh) and c (at, el) satisfy Equations (8) and (7),

3. factor prices satisfy the first order condition in Equation (10),

4. the goods market clears, i.e., Equation (4) holds, where C =
∑

et

∫∞
a c (at, et) g (at, et) dat,

5. the distribution of the state variables is stationary for all (at, et) ∈ [a,∞)×E , i.e. ∂g(at,et)
∂t =

0.
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2.4 Distribution of endowments and wealth

Recall that the state of the economy at instant t can be described by the joint density function

g (at, et, t). In the stationary equilibrium this density is independent of calendar time t and will be

denoted by g (at, et). Given its dependence on one continuous random variable and one discrete

random variable, the joint density can be split into two subdensities, one for each element in et.

Following Bayer and Wälde (2013), the (unconditional) density function of wealth is defined as:

g (at) = g (at, eh) + g (at, el) (13)

where g (at, et) ≡ g (at | et) p (et) are not conditional densities but can be interpreted as the product

between a conditional probability and the probability of having a given endowment of efficiency.

This implies that for an individual currently in state et:∫
g (at, et) dat =

∫
g (at | et) p (et) dat

= p (et)

∫
g (at | et) dat

= p (et) . (14)

Given our two state Markov process for the endowment of efficiency units it is possible to show

that its stationary distribution is given by (See Appendix C):

lim
t→∞

p (eh, t) ≡ p (eh) =
φhl

φhl + φlh
(15)

lim
t→∞

p (el, t) ≡ p (el) =
φlh

φhl + φlh
. (16)

Let s (at, et) = rat + wet − c (at, et) denote the optimal savings function for an individual with

an endowment of efficiency et. As shown in Appendix B, the subdensities g (at, et) in Equation

(13) correspond to the solution of the following non-autonomous quasi-linear system of differential

equations known as Fokker-Planck equations:

s (at, el)
∂

∂at
g (at, el) = −

(
r − ∂

∂at
c (at, el) + φhl

)
g (at, el) + φlhg (at, eh) , (17)

s (at, eh)
∂

∂at
g (at, eh) = −

(
r − ∂

∂at
c (at, eh) + φlh

)
g (at, eh) + φhlg (at, el) (18)

where the derivatives with respect to at describe the cross-sectional dimension of the density func-

tion. The system of equation (17)-(18) takes as given the optimal policy functions for consumption

of individuals. This feature creates a recursive structure within the model, called a Mean-Field

game by Lasry and Lions (2007), that facilitates its solution: households and firms meet at the

market place and make their choices taking prices as given. Prices in turn are determined in gen-

eral equilibrium and hence depend on the entire distribution of individuals in the economy. Such
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distribution is determined by the optimal choices of households and the stochastic properties of the

exogenous shocks.

Once the subdensities are computed, it is possible to transform them into probability subdis-

tributions according to:

G (at, et) =

a∫
a

g (xt, et) dxt (19)

where G (at, et) denotes the probability that an individual with endowment of efficiency equal to et

has a wealth level of at most a. When a→∞, Equation (14) implies that limat→∞G (at, et) = p (et).

Similar to Equation (13), the probability distribution of wealth is given by:

G (at) = G (at, eh) +G (at, el) (20)

which can be used to compute the Gini coefficient in the economy:

G =
1

µ

∞∫
a

G (at) (1−G (at)) dat (21)

with µ = E (at).

2.5 Computation of the equilibrium

A closed form solution for our prototype economy is not available. Therefore, given a set of values

for the structural parameters, the stationary competitive equilibrium in Definition 2.1 is numer-

ically approximated. The algorithm we use builds on earlier work by Achdou et al. (2014b) and

exploits the recursive nature of the model. It consists of two main blocks: an outer block that com-

putes recursively the stationary equilibrium at the macro level using a relaxation algorithm on the

aggregate capital stock; and an inner block that uses an implicit finite difference method to provide

an approximate solution to the household’s problem at the micro level that is valid on the entire

state space. The inner block also uses a finite difference method to approximate the stationary

subdensities that solve the system of ordinary differential equations in Equations (17)-(18) taking

as given the approximated optimal policy functions for consumption4. A detailed description of

the algorithms and their implementation can be found in Appendix D.

3 Structural Estimation and identification issues

While there is a broad consensus on the importance of heterogeneity in macroeconomics not just

for the study of inequality and the distribution of wealth but also for the understanding of aggre-

gates like GDP and the employment rate, there is less aggreement on how these models should

4The finite difference method is an efficient algorithm to numerically approximate the solution of differential
equations. In our particular case, it is used to solve the partial differential equation that defines the HJB equation
and the ordinary differential equation that solve each of the subdensities.
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be taken to the data. To date, calibration is the standard approach used by researchers to map

observations into parameter values of a structural model. Under this methodology, parameters are

determined by minimizing the distance between a set of empirical moments and the same set of

moments implied by the model, or by fixing the values of the parameters to those estimated in

previous microeconomic studies, or to long-run averages of macroeconomic aggregates.

An alternative way to take structural models to the data is through formal econometric methods.

With the exception of Kirkby (2014), little has been done in this regard due to the computational

burden imposed by the solution of heterogeneous agent models. The purpose of this section to show

how the solution of an economic model like that of Section 2 can be used to derive a likelihood

function that can be used to estimate the parameters of the model by extracting information from

the cross-sectional distribution of individual wealth.

A crucial but hardly ever verified assumption for the maximum likelihood estimator to deliver

consistent estimates and valid asymptotic inference is that of identification. Therefore, this section

also defines some of the main identification problems that might arise in heterogeneous agent mod-

els, and with a simple example shows the connection that exists between an estimator’s objective

function and its identification power.

3.1 Full information approach: The likelihood function

Let a = [a1, . . . , aN ] be a sample of N i.i.d observations on individual wealth and θ a K× 1 vector

of structural parameters to be estimated. In what follows, we assume that θ ∈ Θ ⊂ RK, where Θ

is the parameter space which is assumed to be compact. The likelihood function of the data can be

derived using the approximated subdensity functions in Equation (48). According to the identity

in Equation (13) the (unconditional) probability density function of wealth can be computed as:

g (an | θ) = g (an, el | θ) + g (an, eh | θ) (22)

for each n = 1, . . . , N , where we have made explicit the dependence on the vector of parameter

values, θ. This implies that the log-likelihood function of the sample is given by:

LN (θ | a) =
N∑
n=1

log g (an | θ) , (23)

whereas the maximum likelihood (ML) estimator, θ̂N is defined as:

θ̂N = arg max
θ∈Θ

LN (θ | a1, . . . , aN ) . (24)

Since the density function of wealth, and hence the log-likelihood function, summarizes all the

restrictions imposed by the economy model, our maximum-likelihood estimator belongs to the class

of full information estimators.
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For the implementation of the ML estimation we use a numerical (constrained) nonlinear

optimizer with initial value θ0. For each iteration of the optimization routine the economic

model is solved over the state-space A × E using the algorithms introduced in Section 2. In

particular, the wealth lattice is discretized using I ≤ N grid points on the partially ordered set

A = [min (a) ,max (a)]. Once the density function of wealth has been approximated, the log-

likelihood function is constructed in two steps:

1. For each an ∈ a, let An = {a ∈ A : a ≤ an}. Then, the density function evaluated at sample

point an is given by g (an | θ) = g (a? | θ) where a? = maxAn.

2. Once g (an | θ) has been computed for all an ∈ a, the log-likelihood function is built using

Equation (23).

Intuitively, step 1 approximates the sample density function of wealth with a histogram by

assigning to each observation in the sample a density value equal to that of the grid point in the

approximation space for wealth, A, that is closest to its left.

3.2 The identification problem

In general, a vector of parameters, θ, is said to be identified if the objective function, L (θ | a), has

a unique maximum at its true value, θ0. Formally, the identification condition establishes that if

θ 6= θ0 then L (θ | a) 6= L (θ0 | a), for all θ ∈ Θ. Checking this condition in practice is difficult

because the mapping from the structural parameters of the model to the objective function is highly

nonlinear and usually not known in closed form. Therefore, the standard rank and order conditions

used in linear models can not be applied.

Recently, Canova and Sala (2009) documented the existence of identification issues in the context

of linearized DSGE models. These identification problems, which could also emerge in heteroge-

neous agent models, are related to the shape and curvature of the objective function and have been

classified by the authors as follows5:

1. Observational equivalence: if two vector of parameters, θ̂1 ∈ Θ† ⊂ Θ and θ̂2 ∈ Θ† ⊂ Θ

deliver the same maximized objective function, they are said to be observational equivalent.

In the maximum likelihood case, this occurs whenever L
(
θ̂1 | a

)
= L

(
θ̂2 | a

)
and for any

other θ ∈ Θ, L
(
θ̂j | a

)
> L

(
θ | a

)
, for j = 1, 2.

2. Partial-identification: if for some partition θ = [θ1,θ2] ∈ Θ1 ×Θ2 = Θ† ⊂ Θ, L (θ | a) =

L (f (θ1,θ2) | a), for all a and for all θ1 ∈ Θ1 and θ2 ∈ Θ2 where f is a continuous function,

then θ1 and θ2 are said to be partially identified.

5A fifth type of identification problem known as under-identification emerges in models where the solution is only
locally valid, i.e. approximated using perturbation or linear quadratic methods. In that case, some of the model
parameters disappear from the estimator’s objective function because they are not present in the rational expectation
solution of the model.
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3. Weak identification: a subset of parameters in θ is said to be weakly identified if the objective

function, even though has a unique maximum, does not show enough curvature. In other

words if there exists a θ̂ such that L
(
θ̂ | a

)
> L

(
θ | a

)
for all a and for all θ 6= θ̂ ∈ Θ† ⊂ Θ.

However,
∥∥∥L(θ̂i | a)− L(θi | a)∥∥∥ < ε for some θi 6= θ̂i ∈ Θ† ⊂ Θ, i = 1, . . . ,K.

4. Asymmetric weak identification: a group of parameters in θ is said to exhibit asymmetric weak

identification if the objective function is asymmetric in the neighborhood of the maximum,

and its curvature is insufficient only in a portion of the parameter space. In other words

if there exists a θ̂ such that L
(
θ̂ | a

)
> L

(
θ | a

)
for all a and for all θ 6= θ̂ ∈ Θ† ⊂ Θ.

However,
∥∥∥L(θ̂i | a)− L (θi | a)

∥∥∥ < ε for some θi > θ̂i ∈ Θ† ⊂ Θ or for some θi < θ̂i ∈ Θ† ⊂
Θ, i = 1, . . . ,K.

The previous definitions refer to local properties of the objective function and are valid for any

extremum estimator. The global identification properties are equivalent and can be obtained by

simply letting Θ† = Θ. For the case of the maximum likelihood estimator, the identifiability of the

parameters can be alternatively assessed with the Fisher information matrix:

IN (θ) := E
[{

∂LN (θ)

∂θ′

}′{∂LN (θ)

∂θ′

}]
.

The information matrix measures the amount of information that a particular sample provides

about the model parameters. As shown in Rothenberg (1971), the vector of parameters θ is locally

identified if and only if the rank of IN (θ) is constant and equal to K around θ0. However, to

evaluate IN (θ) we need the derivatives of the log-likelihood function with respect to θ which are

not available in closed form for the type of models considered here. Therefore, they can only be

numerically approximated which is out of the scope of this paper and it is left for future research.

An application of the Fisher information matrix for the study of identification issues in linearized

DSGE models can be found in Iskrev (2010a).

3.3 Full information vs. Limited information

From the different types of identification problems described above, it is clear that the choice

of objective function is critical for the ability of any quantitative method to produce identifiable

parameters. The objective function gathers the restrictions that arise from any economic model and

imposes them to the information available to the econometrician. A limited information estimator

uses a portion of the restrictions to build the objective function, while a full information estimator

uses all of the restrictions.

To motivate our full information approach and choice of objective function we first illustrate the

weaknesses and challenges of the limited information framework by investigating the identification

condition in the generalized method of moments (GMM) methodology studied recently in Kirkby
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Table 1. Population parameters, θ0.

In the model, time is measured in years and parameter values should be interpreted accordingly. The
endowment of efficiency units is given by:

det = −Ξdq1,t + Ξdq2,t, Ξ ≡ eh − el and e0 ∈ {eh, el},

where q1,t and q2,t are Poisson process with intensity rates φlh and φhl respectively. The representative house-

hold has standard preferences defined by Ut = Et
[∫∞
t
eρtu (cs) ds

]
where u (ct) =

c1−γt

1−γ . The macroeconomic
identity in the stationary competitive equilibrium is given by:

Y = C − δK, where Y = KαL1−α.

Relative risk aversion, γ 2.0000

Rate of time preference, ρ 0.0410

Capital share in production, α 0.3600

Depreciation rate of capital, δ 0.0800

Endowment of high efficiency, eh 1.0000

Endowment of low efficiency, el 0.1000

Demotion rate, φlh 0.6697

Promotion rate , φhl 4.4644

(2014). The objective function of the GMM measures the (weighted) distance between two sets of

distributional moments and constitutes the method behind most of the calibration procedures used

in the heterogeneous agent literature (See Castañeda et al. (2003) and Dı́az-Giménez et al. (2014)).

For simplicity, suppose we are interested in the power of GMM to identify only one parame-

ter θ ∈ θ at a time while keeping the remaining parameters at their population value. For the

model in Section 2, let θ = {γ, ρ, α, δ, el, eh, φhl, φlh}. In order to avoid over-identification issues

we consequently choose only one moment condition for the construction of the objective function.

In particular, let us choose the Gini coefficient in Equation (21) as our target moment. We then

compute the distance between the Gini coefficient in the population, G (θ0), and the Gini coefficient

obtained varying one parameter at a time in a reasonable neighborhood of the true value, G (θ).

The population values for the structural parameters, θ0, are given by the calibration in Table

1 which combines that in Huggett (1993) for the endowments of efficiency units and transition

probabilities, with that in Aiyagari (1994) for the remaining parameters. In the model, time is

measured in years and parameter values should be interpreted accordingly6. The transition rates

for the Poisson processes are obtained from Equations (15)-(16).

For each of the elements in θ, Figure 1 plots the percentage deviation of the GMM objective

function from the Gini coefficient in the population as a function of the parameter space. The

results suggest that the objective function attains a unique minimum in the case of parameters

6Huggett (1993) reports transition probabilities of P (eh | el) = 0.5 and P (eh | eh) = 0.925 in an model economy
with six periods per year.
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Figure 1. Relative distance between G (θ) and G (θ0). The graph shows the percentage deviation of
the GMM distance criterion as a function of the parameter space. The population values for the structural
parameters, θ0, are given in Table 1 and are represented by the dotted vertical line.

related to the exogenous process in the economy, {el, eh, φhl, φlh} and the coefficient of relative risk

aversion, γ. The minimum corresponds indeed to the true parameter value as indicated by the dot-

ted vertical line. However, for the discount rate, ρ, the depreciation rate of capital, δ, and the share

of capital in the production function, α, the GMM distance function suffers from observational

equivalence, i.e. exhibits multiple local minima. Therefore, the Gini coefficient does not contain

enough information about certain parameters of the model and if used for estimation it can lead

to ill-behaved estimates and invalid asymptotic inference.

In general, minimum distance estimators, like the GMM, exhibit identification deficiencies rela-

tive to the maximum likelihood estimator as it will be clear later. While the former uses only partial

or limited information through the set of moments in the objective function, the latter uses the

whole distribution of the variables in the model to identify the parameters. Canova and Sala (2009)

have shown the pervasive consequences of using a limited information approach to conduct inference
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when identification problems are present in linearized DSGE models. Therefore, we will focus on

the statistical properties of a full information likelihood approach. In particular, we will investigate

identification issues by exploiting the direct link that exists between the density function of the state

variables in the model and the likelihood of the data as shown in Subsection 3.1. The feasibility of

our procedure is dictated, in general, by the use of continuous-time methods, and in particular by the

Fokker-Planck equations that allow us to approximate the evolution of the distribution of wealth.

4 Population identification analysis

We begin our analysis of identification by studying the behavior of the density function of wealth

when the sampling process is known. A basic prerequisite for carrying out valid inference about the

parameter vector θ, is that distinct values of θ ∈ Θ imply distinct density functions. Therefore,

this section investigates whether it is possible (or not) to distinguish the model’s density function of

wealth approximated using the true parameter values, g (a | θ0), from the density function approxi-

mated using a range of parameter values that differ from those in the population, g (a | θ), with θ 6=
θ0. We refer to this approach as population identification analysis since it is independent of the data,

and its conclusions remain valid even with samples of infinite size. Formally, we say that the parame-

ter vector θ ∈ Θ is identified if g (a | θ) = g (a | θ0). As discussed in Section 2, there is no analytical

expression for the density function and therefore it must be approximated it using I grid points on

the wealth lattice. In what follows, we set A = [0, 40] and I = 1000. In order to make the identi-

fiability condition operational we use the L1 norm to measure the distance between two densities:

d (θ,θ0) ≡ d (g (a | θ) , g (a | θ0)) =

I∑
i=1

|g (ai | θ)− g (ai | θ0) |. (25)

From a statistical point of view, the probability density function should contain all the rele-

vant information about the value of the parameter vector θ. Therefore, if the distance function

in Equation (25) features identification problems, we cannot hope to achieve identification of the

model parameters using the likelihood of the data.

Similar to the case of the GMM distance function discussed in Section 3, Figure 2 plots the

shape of the distance function d (θ,θ0) in each of the elements of θ. In each case, we vary one

parameter at the time within an economically reasonable range while keeping all the remaining

parameters at their population value. The population value of the parameter vector is indicated

by the dotted vertical line.

The figure displays two important features. First, the use of the entire density function provides

more information for parameter identification relative to limited information methods. In fact, the

distance function is uniquely minimized at θ0 which rules out identification problems related to ob-

servational equivalence. Alternative metrics like the Chi-squared distance and the Earth’s Moving
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Figure 2. Distance function d (g (a | θ) , g (a | θ0)). The graph shows the percentage deviation of the L1

distance criterion as a function of the parameter space. The population values for the structural parameters,
θ0, are given in Table 1 and are represented by the dotted vertical line.

Distance function give similar results. They are not displayed here for space considerations but are

available upon request. Second, although displaying an unique minimum, the distance functions

feature some asymmetries in all dimensions of the parameter space except for γ.

The figure also suggests that the distance function exhibits enough curvature in the neighbor-

hood of θ0. To corroborate this conclusion and rule out weak identification issues we follow Canova

and Sala (2009) and try to determine whether there exists a region of the parameter space with

parameter vectors that produce small deviations from the population model. For each of the struc-

tural parameters in θ we uniformly draw 1000 values from the intervals used to build Figure 2,

solve the model, approximate the density function of wealth and measure its distance from the true

density function using Equation (25). We then construct the distribution of the distance function

and select only those parameter draws for which the distance function is within the 0.1 percentile

of the distribution around zero.
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Table 2. Population intervals generating small distance functions.

The table reports the median, minimum and maximum values of the parameters generating distance functions
d (θ, θ0) which are in the 0.1 percentile of the distribution of distance functions around zero. In each case,
the percentiles are obtained by uniformly randomizing the parameters within the ranges used in Figure 2.

θ θ0 Min. Mean Median Max.
γ 2.0000 1.9290 1.9899 1.9742 2.0732
ρ 0.0410 0.0399 0.0408 0.0404 0.0418
α 0.3600 0.3595 0.3601 0.3601 0.3608
δ 0.0800 0.0741 0.0804 0.0806 0.0863
el 0.1000 0.1000 0.1001 0.1000 0.1004
eh 1.0000 0.9644 1.0010 0.9989 1.0365
φhl 4.4644 4.3543 4.4706 4.4740 4.5745
φlh 0.6697 0.6596 0.6670 0.6656 0.6796

Table 2 summarizes the results of the experiment. For each of the parameters of the model,

it reports its value in the population as well as the minimum, median and maximum value of the

generated intervals. In general, the intervals are small and concentrated around the true value,

i.e., only parameter values close to the true are compatible with small distances between densities.

The composition of these interval suggest that there is no observational equivalence, neither weak

identification problems.

Figure 2 and Table 2 only consider one dimension of the parameter space at the time. This

prevents from detecting ridges in the objective function that might suggest partial identification

problems. Therefore, Figure 3 plots the distance surfaces and their respective contours for selected

combinations of parameters while keeping the remaining parameters fixed at their true value.

A thoughtless look to the figure might erroneously lead us to conclude that for some combi-

nations of parameters, the distance function indeed exhibits ridges, e.g. α and δ and/or δ and ρ.

We will be tempted then to conclude that the distribution of wealth alone carries little information

about the correct combination of those parameters. However, a careful analysis of the results in

Figure 3 indicates that all the parameter combinations selected are correctly identified. This can be

seen by looking at the contour plots in the right column, where we have also marked the location of

the true parameter values, θ0, and the location of the parameters that deliver the maximum of the

distance function, θ̃ = arg max d (θ,θ0). We can conclude that the model is well identified since

θ̃ ≈ θ0. Small discrepancies between the locations are due to the approximation errors in the solu-

tion of the heterogeneous agent model and to the design of the intervals used for the computation

of the distance function.

In sum, the graphical evidence provided in this section indicates that the prototype model of

Section 2 does not exhibit (local) identification problems in any of the dimensions of the parameter

space at the population level.
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Figure 3. Distance surface for selected parameters. The graph shows the percentage deviation of the
L1 distance function for selected parameters as a function of the parameter space on the left column and its
respective contour plot on the right column. The population values for the structural parameters, θ0, are
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5 Finite sample properties and identification issues

This section uses Monte Carlo simulations to investigate the properties of the ML estimator in small

samples by estimating the model of Section 2 on simulated data sets. The experiment is carried

out by simulating M = 100 samples of size N = 5000, 10000, 20000, 50000 drawn from the model’s

population probability density function g (a | θ0). For each sample we estimate the vector of model

parameters using the maximum likelihood estimator defined in Equation (24)7. The distribution

of wealth is numerically approximated using I ≤ N grid points in the wealth-lattice spread over

the interval A = [0, 40]. The simulated data is generated using the Acceptance-Rejection sampling

algorithm described in Appendix E.

The results of the Monte Carlo experiment are summarized in Table 3. For each N , it reports

the true parameter vector, the mean of the estimates across the M simulated data sets, the 5%,

50% and 95% percentiles of the estimated distribution, the vector of mean percentage biases and

the Monte Carlo standard errors (in parenthesis). It is important to mention that the reported

standard errors do not capture sampling uncertainty as we are using data from the true data gen-

erating process. We have excluded eh from the estimation exercise since from the model’s point of

view the endowments of efficiency units are normalized by this level. Therefore, any value for el

should be interpreted as relative to eh which in the population we have set to be one.

The Monte Carlo experiment reveals some important features that should be addressed. First,

the mean estimate of the risk aversion coefficient, the discount rate and the parameters describing

the endowments of efficient units are within a reasonable distance from their population counter-

parts. However, the mean estimate of the capital share in production and the depreciation rate of

capital are positively biased. The bias is far from negligible in small samples. Their mean estimates

are both economically and statistically different from those in the population. Second, the biases

and the Monte Carlo standard errors decrease significantly as the sample size increases. For the

case of N = 50000, the maximum bias does not exceed 5%. Third, the standard errors for γ and

φlh although decreasing with the sample size, are high relative to that of the rest of parameters.

Fourth, the distribution of estimates seems far from normal making asymptotic inference unreliable.

For N = 20000, which is similar to the sample size available in real life situations, Figure 4 plots

the distribution of parameter estimates. Superimposed with a vertical bar in each box is the true

parameter value. The figure gives a clearer idea of the meaningful biases already reported in α and

δ and shows some deficiencies in γ and el that are not evident from looking at Table 3.

7The initial value used in the estimation procedure corresponds to the true parameter vector, θ0 = θ0.
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Table 3. Small sample estimates.

The table reports finite sample estimates of the structural parameters of the model. The mean, the 5th, 50th and 95th percentile, % bias and Monte
Carlo standard errors (in parenthesis) are obtained using M = 100 replications of the experiment. The sample size in each replication is given by N .

N = 5000 N = 10000 N = 20000 N = 50000

θ0 Mean 5% Median 95% Bias Mean 5% Median 95% Bias Mean 5% Median 95% Bias Mean 5% Median 95% Bias

γ = 2.00 2.18 1.01 1.78 4.65 9.20
(1.15)

2.48 1.00 2.40 4.78 24.22
(1.27)

2.27 1.05 2.17 3.95 13.45
(0.97)

2.06 1.37 1.98 2.89 3.03
(0.45)

ρ = 0.041 0.04 0.02 0.04 0.08 7.58
(0.02)

0.04 0.02 0.04 0.06 1.05
(0.01)

0.04 0.03 0.04 0.06 1.19
(0.01)

0.04 0.03 0.04 0.05 0.66
(0.01)

α = 0.36 0.45 0.38 0.45 0.51 25.12
(0.05)

0.43 0.34 0.43 0.50 19.40
(0.05)

0.42 0.35 0.41 0.53 17.31
(0.05)

0.37 0.35 0.37 0.40 2.01
(0.02)

δ = 0.08 0.14 0.09 0.13 0.17 69.32
(0.04)

0.12 0.08 0.13 0.16 54.62
(0.03)

0.12 0.08 0.12 0.18 48.44
(0.03)

0.08 0.07 0.08 0.10 4.79
(0.01)

el = 0.10 0.12 0.01 0.06 0.35 16.81
(0.12)

0.15 0.01 0.14 0.37 46.25
(0.12)

0.13 0.01 0.12 0.30 29.15
(0.10)

0.11 0.01 0.10 0.22 9.06
(0.06)

φhl = 4.4644 4.56 2.40 4.04 7.43 2.24
(1.57)

4.38 2.69 4.09 6.81 -1.98
(1.24)

4.34 2.30 4.25 6.17 -2.63
(0.91)

4.44 3.45 4.41 5.58 -0.57
(0.62)

φlh = 0.6697 0.76 0.18 0.56 1.98 13.53
(0.57)

0.72 0.18 0.61 1.69 7.11
(0.44)

0.70 0.28 0.60 1.46 4.75
(0.36)

0.69 0.40 0.64 1.11 2.95
(0.22)
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Figure 4. Finite sample distribution of parameter estimates. The graph plots the histogram of
estimated parameters across M = 100 random samples of size N = 20000 generated from the true data
generating process. The vertical line denotes the true parameter value.

While the results are encouraging for large samples, as they approach the true values in the

population, they suggest that the strength of identification power of the maximum likelihood esti-

mator in small samples is reduced in some dimensions of the parameter space. In the case of the

prototype economy of Section 2, the data deficiencies induced by the use of samples of reduced

size are reflected in a poor estimation of parameters related to the supply side of the economy.

In particular, the results imply a higher participation of capital in the production function, and a

higher fraction of the depreciated capital stock.

What are the consequences of having biased estimates in some of the model parameters for the

macroeconomic aggregates and the theoretical implications of heterogeneous agent models? Figure

5 plots the distribution of estimates for the steady state interest rate, capital-output ratio and
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Figure 5. Steady state macroeconomic aggregates estimates. The graph shows the implications for
the steady state interest rate, capital-output ratio and savings rate of the ML estimation using a sample size
of N = 20000. The aggregate savings rate in the economy is computed as (Y−C)/Y . The vertical line denotes
their value in the population.

aggregate savings rate implied by the ML estimation when N = 20000. While the small samples

deficiencies documented above do not affect the steady state interest rate, they imply a downward

bias in the capital-output ratio and an upward bias in the economy-wide savings rate that are far

from trivial and could lead to misleading economic policy interpretations and recommendations.

In particular, the estimation results overstate the contribution of uninsurable idiosyncratic risks to

aggregate savings and therefore might erroneously suggest a degree of precautionary savings that

is absent in the economy.

The evidence so far indicates that the accuracy of the ML estimates is poor in small samples. As

pointed out in Canova and Sala (2006), it is possible to have situations where identification issues

emerge just because of small samples even when the objective function is well behaved. As an

example, consider the simple case of OLS with p linear independent regressor, which ensures that

the model parameters are identified in the population (See Newey and McFadden, 1986). In finite

samples, however, the parameters of the model might not be identified due to data deficiencies. In

fact, if N < p the matrix of linear regressors is singular preventing us to recover the parameters of

the model. Nonetheless, as N → ∞ the estimated parameters will converge to their values in the

population as the OLS sample objective function uniformly converges to a well behaved population

objective function.

To assess the previous statement in our likelihood framework we build the log-likelihood profile

of a particular sample with N = 5000 in each of the elements of θ by varying one parameter at a time
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Figure 6. Individual log-likelihood profile. The graph shows the log-likelihood function L (θ | a)
for each θ ∈ θ along a neighborhood of the its true value, while keeping the remaining parameters at their
population levels. The vertical line denotes the true parameter value and ’X’ marks the location of parameter
value associated with the maximum value of the log-likelihood profile.

in an economically reasonable neighborhood of its true value while keeping the remaining param-

eters at their population value. Figure 6 plots the results together with the true parameter values

and the parameter value that generates the maximum of the log-likelihood function. Analogous

to the population identification analysis of Section 4, the results suggest that the parameters of

the model can be fully recovered by using only data on individual wealth. Similar conclusions

can be reached by looking at Figure 8 in Appendix F where we plot the bivariate log-likelihood

profile. Therefore, our experiment suggest that the biases found in small samples arise from data

deficiencies and not from identification issues.

In conclusion, our Monte Carlo evidence suggest that although the model is well identified in
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Table 4. Small sample (conditional) estimates.

The table reports finite sample estimates for a subset of the structural parameters of the model conditional
on the calibrated values reported in the first row. The mean, the 5th, and 95th percentile, and % bias are
obtained using M = 100 samples each of them of size N = 5000.

α = α0 δ = δ0 α = α0 and δ = δ0

θ0 Mean 5% 95% Bias Mean 5% 95% Bias Mean 5% 95% Bias

γ = 2.00 1.99 0.89 4.85 -0.64 2.04 0.99 4.53 1.91 2.67 0.82 4.50 33.63

ρ = 0.041 0.05 0.02 0.08 10.58 0.05 0.02 0.08 9.54 0.04 0.03 0.05 2.04

α = 0.36 - - - - 0.37 0.32 0.42 1.54 - - - -

δ = 0.08 0.08 0.05 0.10 -5.08 - - - - - - - -

el = 0.10 0.09 0.01 0.37 -9.31 0.10 0.01 0.36 1.03 0.17 0.01 0.44 64.78

φhl = 4.4644 4.65 2.53 7.68 4.09 4.63 2.34 7.62 3.75 4.27 2.09 7.37 -4.33

φlh = 0.6697 0.76 0.16 2.00 12.94 0.76 0.16 2.00 13.51 0.73 0.17 2.00 8.98

the population, the use of small samples generates considerable inferential problems. However,

as the sample size grows the use of cross-sectional data on individual wealth provides sufficient

information to recover all the structural parameters of an otherwise standard heterogeneous agent

model using a likelihood framework.

6 A note on calibration: Implications for empirical research

Our findings indicate that the maximum likelihood estimator produce parameter estimates that

are usually biased and poorly identified in finite samples. A common practice among economists to

get around this obstacle is to calibrate those parameters that are problematic by fixing their value

and estimate the remaining ones. Therefore, this section investigates the potential consequences of

following such an strategy. In the context of unidentified representative agent (linearized) DSGE

models, Canova and Sala (2009) conclude that combining both approaches can lead to a biased

inference and meaningless parameter estimates. To check whether this is the case in the heteroge-

neous agent model analyzed here, we conduct three Monte Carlo experiments based on the a priori

assumption that the share of capital in the production function and the depreciation rate of capital

can not be identified properly in small samples.

Table 4 summarizes the results when the sample size is N = 5000. It reports the true parameter

vector, the mean of the estimates across the M simulated data sets, the 5%, and 95% percentiles of

the estimated distribution, and the vector of mean percentage biases for the following cases: (i) α is

calibrated to its value in the population; (ii) δ is calibrated to its value in the population; (iii) α and

δ are calibrated to their respective values in the population. Two main conclusions emerge from the

experiment. First, while calibrating only one of the parameters reduces the bias in γ and el relative

to the case where no calibration is used, fixing both at the same time extremely increases the bias.

The opposite occurs with the mean estimate of the discount rate: its mean bias is considerably
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Figure 7. Log-likelihood profile contours for selected parameters. The graph shows the contour of
the log-likelihood function L (θ | a) for selected combination of parameters using a random sample of size
N = 5000 generated from the true model. The contours on the left use are identical to those in Figure 8.
The contours on the right are built by varying the values of the parameters in the combination set while
keeping the remaining parameters at their true population value, except for α and δ which are miscalibrated
to 0.5 and 0.1 respectively. ”×” locates the true parameter values, and the combination of parameters
that deliver the maximum of the log-likelihood function.

reduced by calibrating α and δ at the same time, while increases when only one of the problematic

parameters is fixed. Second, the strategy of mixing calibration and estimation has no considerable

effects on the mean estimates of the arrival rates of the Poisson process, φlh and φhl.

The estimation results in Table 4 are mixed about the advantages or disadvantages of following

a strategy based on combining calibration and estimation. While some parameters are better iden-
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tified conditional on some others being calibrated, it could also be the case the some parameters

are unaffected or considerably pushed away from their value in the population. However, so far we

have assumed that the econometrician knows the population value of the calibrated parameters.

In practice this is usually not the case. Therefore, Figure 7 plots the contours of the log-likelihood

function for selected combinations of parameters using a random sample of size N = 5000 generated

from the true model. The contours on the left column are identical to those found in Appendix

F while those on the right column correspond to the log-likelihood profile when the problematic

parameters α and δ are miscalibrated to 0.5 and 0.1 respectively. For both cases, we have marked

the combination of parameters in the population and the combination of parameters that deliver

the maximum of the log-likelihood function. As as result of such miscalibration, the estimator’s

objective function changes significantly in shape and hight, inducing biases in the estimates of the

remaining parameters.

For small samples, the results suggests that estimating a subset of the parameters in the model,

conditional on the remaining parameters being calibrated introduce stronger biases than those

produced when unconditionally estimating all the structural parameters. In general, fixing some

of the parameters does not increase the overall accuracy of the maximum likelihood approach in

our heterogeneous agent framework since it may take the optimization routine to search for the

maximum of the likelihood function in the wrong portion of the parameter space (See Canova and

Sala, 2006). This in turn, will lead to inaccurate and inappropriate economic conclusions.

7 Conclusions

Heterogeneous agent models constitute a powerful framework in macroeconomics not just for the

study of inequality and the distribution of wealth but also for the understanding of aggregates

like GDP and the employment rate. However, there is little aggreement on how these models

should be taken to the data. To date, calibration is the standard approach used by researchers

to map observations into parameter values. Despite a being very illustrative methodology for the

investigate the implications of economic, the use of econometric methods provide some important

advantages by allowing: (i) to impose on the data the restrictions arising from the economic theory

associated with a particular model; (ii) to assess the uncertainty surrounding the parameter values

which ultimately provides a framework for hypothesis testing, (iii) for the use of standard tools of

models selection and evaluation.

In this paper we introduce a simple full information likelihood approach to estimate the struc-

tural parameters of heterogeneous agent models cast in continuous-time by using the information

content in the cross-sectional distribution of wealth. Our approach builds on earlier work by Bayer

and Wälde (2011, 2013) and Achdou et al. (2014a) and uses Fokker-Planck equations to compute

the stationary probability density function of wealth which can be later used to derive the likelihood
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function of the model.

We also investigate identification issues in our likelihood-based framework when the only avail-

able information to the econometrician is a cross-sectional sample of individual wealth. Given that

the mapping between the deep parameters of the model and the estimator’s objective function is

highly nonlinear and not available in closed form, we assess the identification condition indirectly

using simulation and graphical diagnostics as in Canova and Sala (2009). When the sample objec-

tive function is available we also investigate the small sample properties of the maximum likelihood

estimator and the consequences of mixing calibration with estimation.

Our results indicate that the parameters of our prototype Bewley-Hugget-Aiyagari model are

identified in the population, while the data-based likelihood function exhibit some identification

issues in small samples. This identification problems lead to parameter estimates that are positively

biased in the case of the capital share in the production function and the depreciation rate of the

capital stock. However, as the sample size grows, their mean estimates, computed from a Monte

Carlo experiment, converge to the value in the population.

We also find that following an empirical strategy that mixes calibration with estimation in an

heterogeneous agent framework may deteriorate the properties of the maximum likelihood estimator

by inducing changes in the shape and hight of the objective function. The problems are aggravated

if the calibrated parameters are fixed to a value considerably different from their value in the

population and if the sample size is small.

While our results are encouraging and suggest an important role for likelihood-based inference in

heterogeneous agent models there is much more to be done before conclusive and definite evidence

is available. Our future research agenda includes the computation of standard errors, investigat-

ing the properties of the maximum-likelihood models in more sophisticated models as in Krusell

and Smith (1998), Cagetti and Nardi (2006), Angeletos and Calvet (2006), Angeletos (2007) and

Benhabib et al. (2011), and testing the models with observed data.
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A Hamilton-Jacobi-Bellman equations

Define the optimal value function

V (a0, e0;w, r) = max
{ct}∞t=0

U0 s.t. (2), (3)

in which the general equilibrium factor rewards r and w are taken as parametric.

For any t ∈ [0,∞), the household’s problem can be characterized by the Hamilton-Jacobi-

Bellman equation following the principle of optimality:

ρV (at, et; r, w) = max
ct∈R+

{
u(ct) +

1

dt
EtdV (at, et; r, w)

}
.

Applying the change of variable formula (see Sennewald and Wälde, 2006) the continuation

value is given by:

dV (at, et; r, w) = Va (at, et) dat + (V (at, el)− V (at, eh))dq1(t) + (V (at, eh)− V (at, el))dq2(t)

where Va (at, et) denotes the partial derivative of the value function with respect to wealth.

Using Equation (2), and the martingale difference properties of the stochastic integrals under

Poisson uncertainty,

Es
[ ∫ t

s
(V (at, el)− V (at, eh))dq1(t)−

∫ t

s
(V (at, el)− V (at, eh))φ1(et)dt

]
= 0

Es
[ ∫ t

s
(V (at, eh)− V (at, el))dq2(t)−

∫ t

s
(V (at, eh)− V (at, el))φ2(et)dt

]
= 0

for s ≤ t, the Hamilton-Jacobi-Bellman equation can be written as:

ρV (at, et; r, w) = max
ct∈R+

{
u(ct) + Va(at, et; r, w)(rat + wet − ct)

+(V (at, el; r, w)− V (at, eh; r, w))φ1(et) + (V (at, eh; r, w)− V (at, el; r, w))φ2(et)
}

The first-order condition of an interior solution reads:

u′(ct) = Va(at, et; r, w), (26)

for any t ∈ [0,∞) making optimal consumption c?t = c(at, et) a function only of the states and

independent of calendar time, t.

Due to the state dependence of the arrival rates in the endowments of efficiency units, only one

Poisson process will be active for each of the values of the discrete state variable, et. Using the first

order condition we obtain a bivariate system of maximized HJB equations:

ρV (at, eh; r, w) = u(c?t ) + Va(at, eh; r, w)(rat + weh − c?t ) + (V (at, el; r, w)− V (at, eh; r, w))φlh,

ρV (at, el; r, w) = u(c?t ) + Va(at, el; r, w)(rat + wel − c?t ) + (V (at, eh; r, w)− V (at, el; r, w))φhl.

28



B Fokker-Planck equations

Assume there exists a function f whose arguments are the stochastic process a and e and define the

agent’s optimal savings function as s (at, et) = rat + wet − c (at, et). Using the change of variable

formula, the evolution of f is given by:

df (at, et) = fa (at, et) s (at, et) dt

+ (f (at, el)− f (at, eh)) dq1 (t) + (f (at, eh)− f (at, el)) dq2 (t)

Due to the state dependence of the arrival rates only one Poisson process will be active. Applying

the expectations operator conditional on the information available at instant t and dividing by dt

we obtain the infinitesimal generator of f (at, et), denoted by Af (at, et) ≡ Etdf(at,et)
dt :

Etdf (at, et)

dt
= fa (at, et) s (at, et)

+ (f (at, el)− f (at, eh))φlh + (f (at, eh)− f (at, el))φhl. (27)

By means of Dynkin’s formula, the expected value of the function f (·) at a point in time t is

given by the expected value of the function at instant s < t plus the sum of the expected future

changes up to t:

Ef (at, et) = Ef (as, es) +

t∫
s

E (Af (aτ , eτ )) dτ (28)

Differentiating Equation (28) with respect to time:

∂

∂t
Ef (at, et) =

∂

∂t

Ef (as, es) +

t∫
s

E (Af (aτ , eτ )) dτ


=

∂

∂t

Ef (as, es) +

t∫
s

E
(
Eτdf (aτ , eτ )

dτ

)
dτ


=

∂

∂t

Ef (as, es) +

t∫
s

Edf (aτ , eτ )


= E (Af (at, et))

=
∑

et∈{eh,el}

∞∫
a

Af (at, et) g (at, et, t) dat

that is:

∂

∂t
Ef (at, et) =

∞∫
−∞

Af (at, eh) g (at, eh, t) dat

︸ ︷︷ ︸
ωeh

+

∞∫
−∞

Af (at, el) g (at, el, t) dat

︸ ︷︷ ︸
ωel
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where g (at, et, t) is the joint density function of wealth and endowment of efficiency units at instant

t.

For illustration consider the case of et = eh, i.e., ωeh . Using the definition of the infinitesimal

operator together with Equation (27) we note that:

Af (at, eh) = fa (at, eh) s (at, eh) + (f (at, el)− f (at, eh))φlh (29)

Hence,

ωeh =

∞∫
a

[
fa (at, eh) s (at, eh) + (f (at, el)− f (at, eh))φlh

]
g (at, eh, t) dat

=

∞∫
a

fa (at, eh) s (at, eh) g (at, eh, t) dat +

∞∫
a

(f (at, el)− f (at, eh))φlhg (at, eh, t) dat

Using integration by part for the term associated with fa:

∞∫
a

fa (at, eh) s (at, eh) g (at, eh, t) dat = −
∞∫
a

f (at, eh)
∂

∂at
[s (at, eh) g (at, eh, t)] dat

where:

∂

∂at
[s (at, eh) g (at, eh, t)] =

(
rt −

∂

∂at
c (at, eh)

)
g (at, eh, t) + s (at, eh)

∂

∂at
g (at, eh, t) .

Hence,

ωeh =

∞∫
a

f (at, eh)

[
−
(
rt −

∂

∂at
c (at, eh)

)
g (at, eh, t)− s (at, eh)

∂

∂at
g (at, eh, t)

]
dat

+

∞∫
a

[
(f (at, el)− f (at, eh))φlh

]
g (at, eh, t) dat

ωel =

∞∫
a

f (at, el)

[
−
(
rt −

∂

∂at
c (at, el)

)
g (at, el, t)− s (at, el)

∂

∂at
g (at, e2, t)

]
dat

+

∞∫
a

[
(f (at, eh)− f (at, el))φhl

]
g (at, el, t) dat

Note that the expected value of f can be written as:

Ef (at, et) =

∞∫
a

f (at, eh) g (at, eh, t) dat +

∞∫
a

f (at, el) g (at, el, t) dat
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and therefore:

∂

∂t
Ef (at, et) =

∞∫
a

f (at, eh)
∂

∂t
g (at, eh, t) dat +

∞∫
a

f (at, el)
∂

∂t
g (at, el, t) dat

(30)

Finally we equate Equations (29) and (30) and collect terms to obtain:

∞∫
a

f (at, eh)ϕehdat +

∞∫
a

f (at, el)ϕeldat = 0 (31)

where:

ϕeh = −
(
rt −

∂

∂at
c (at, eh) + φlh

)
g (at, eh, t)

− s (at, eh)
∂

∂at
g (at, eh, t) + φhlg (at, el, t)−

∂

∂t
g (at, eh, t)

ϕel = −
(
rt −

∂

∂at
c (at, el) + φhl

)
g (at, el, t)

− s (at, el)
∂

∂at
g (at, el, t) + φlhg (at, eh, t)−

∂

∂t
g (at, el, t)

The Fokker-Planck equations that define these subdensities are obtained by setting:

ϕel = ϕeh = 0

since that is that only way the integral equation (31) can be satisfied for all possible functions

f . A formal proof can be found in Bayer and Wälde (2013). This results in a system of two

non-autonomous quasi-linear partial differential equations in two unknowns g (at, eh, t), g (at, el, t):

∂

∂t
g (at, eh, t) + s (at, eh)

∂

∂at
g (at, eh, t) =

−
(
rt −

∂

∂at
c (at, eh) + φlh

)
g (at, eh, t) + φhlg (at, el, t)

∂

∂t
g (at, el, t) + s (at, el)

∂

∂at
g (at, el, t) =

−
(
rt −

∂

∂at
c (at, el) + φhl

)
g (at, el, t) + φlhg (at, eh, t) .

The long-run subdensities correspond to the case where the time derivatives ∂g(at,et,t)/∂t are zero

for all et ∈ E , which transforms the previous system of equations into one of ordinary differential

equations as described by Equations (17) and (18) in the main text.
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C Transition probabilities for the endowment of efficiency units

This appendix shows how to derive the limiting (stationary) probability distribution of the endow-

ment of efficiency units defined in Equations (15) and (16) from the arrival rates of the stochastic

process defined by Equation (3).

For illustration purposes consider an individual who is in state et = el at time s. Let p (el, eh, t) ≡
P (et = eh | es = el) for s ≤ t denote the probability that the individual jumps from state el at time

s from state eh at time t, and φlh and φhl the instantaneous transition rates at which the stochastic

process jumps to state el from state eh and to state eh from state el respectively. Then, the

transition probabilities at time t can be computed from solving the following system of Backward

Kolmogorov equations (see Ross, 2009):

ṗ (eh, eh, t) = φlh [p (el, eh, t)− p (eh, eh, t)] ,

ṗ (el, eh, t) = φhl [p (eh, eh, t)− p (el, eh, t)]

where ṗ (ei, ej , t) = lims→0
1
s [p (ei, ej , t+ s)− p (ei, ej , t)] for all i, j ∈ E and p (eh, eh, s) = 1 and

p (el, eh, s) = 0 are initial conditions. The solution to this system of ordinary differential equations

is given by:

p (eh, eh, t) =
φhl

φhl + φlh
+

φlh
φhl + φlh

e−(φhl+φlh)(t−s) (32)

p (el, eh, t) =
φhl

φhl + φlh
− φhl
φhl + φlh

e−(φhl+φlh)(t−s). (33)

Now let p (eh, s) denote the unconditional probability of being in state eh at time s. The

unconditional probability of being in the same state at time t > s can be computed according to:

p (eh, t) = p (eh, s) p (eh, eh, t) + (1− p (eh, s)) p (el, eh, t) . (34)

In the limit as t→∞ the unconditional probability of having an endowment of high efficiency

is given by:

lim
t→∞

p (eh, t) = p (eh) =
φhl

φhl + φlh
. (35)

A similar procedure can be used to show that the stationary and unconditional probability of

having an endowment of low efficiency is:

lim
t→∞

p (el, t) = p (el) =
φlh

φhl + φlh
. (36)

The system of equations formed by (32) and (33) together with an appropriate choice of (t− s)
can be used to back out the instantaneous transition rates of the Poisson processes, φhl and φlh

from any probability transition matrix. Given the annual frequency used in the calibration of the

model of Section 2, we set (t− s) = 1 (one year).
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D Computation of the stationary equilibrium

To computation of the stationary density of wealth is done following the method in Achdou et al.

(2014b) which consists of two main blocks. The first block computes the stationary general equilib-

rium at the macro level by using the following fixed point algorithm in the time-invariant aggregate

capital stock:

Algorithm D.1 (Stationary General Equilibrium) Make an initial guess for the aggregate

capital stock, K0, and then for j = 0, 1, . . . :

1. Compute the factor prices rj and wj using Equation (10).

2. Compute the optimal consumption functions cj (a, eh) and cj (a, el) and the subdensities gj (a, eh)

and gj (a, el).

3. Update Kj+1 according to

Kj+1 = ωKj + (1− ω)
∑
et

∞∫
a

atg
j (at, et) dat

where ω ∈ (0, 1] is a relaxation parameter.

4. If
∥∥Kj+1 −Kj

∥∥ < ε stop, otherwise return to step 1.

Algorithm D.1 does not require to update the aggregate labor supply L at each iteration

j = 0, 1, . . . since in our prototype economy the labor supply is assumed to be exogenous as

can be seen from Equation (12).

The second block approximates the solution of the household’s problem at the micro level using

the finite difference methods suggested in Candler (1999) and Achdou et al. (2014b). This solution,

which is required in step 2 of Algorithm D.1 for every iteration j = 0, 1, . . . , consists of two set of

functions which can be independently computed. The first set corresponds to the policy functions

for consumption associated with the solution to the HJB equations (7) and (8), while the second set

corresponds to the subdensity functions associated with the solution to the Fokker-Planck equations

(17) and (18).

Solving the Hamilton-Jacobi-Bellman equations.

Consider first the solution to the HJB equations. For each et ∈ E , the finite difference method

approximates the function V (at, et) on an equally spaced grid for wealth with I discrete points,

ai, i = 1, . . . , I, where ai ∈ A = [amin, amax] and amin = a. The distance between points is denoted
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by ∆a and we introduce the short-hand notation Ve,i ≡ V (ai, e). The derivative Va (ai, e) ≡ V ′e,i is

computed with either a forward or a backward difference approximation:

V
′F
e,i ≈

Ve,i+1 − Ve,i
∆a

(37)

V
′B
e,i ≈

Ve,i − Ve,i−1

∆a
. (38)

Following Candler (1999), the choice of difference operator is based on an upwind differentiation

scheme. The correct approximation is based on the direction of the continuous state variable. Thus,

if the saving function, s (ai, e) ≡ se,i = rai+we−(u′)−1
(
V ′e,i

)
, is positive we use a forward operator

and if it is negative we use the backward operator. This gives rise to the following upwind operator:

V ′e,i = V
′F
e,i 1{sFe,i>0} + V

′B
e,i 1{sBe,i<0} + V̄ ′e,i1{sFe,i<0<sBe,i}

(39)

where 1{·} denotes the indicator function and, sFe,i and sBe,i the saving functions computed with the

forward and difference operators respectively. Following Achdou et al. (2014b), the concavity of the

value function in the wealth dimension motivates the last term in Equation (39) since there could

be grid points ai ∈ A for which sFe,i < 0 < sBe,i. In those cases, they suggest to set savings to be

equal to zero which implies that the derivative of the value function is equal to V̄ ′e,i = u′ (rai + we).

The finite difference approximation to the HJB equations is then given by:8

ρVe,i = u (ce,i) + V ′e,i [rai + ew − ce,i] + φ−ee [V−e,i − Ve,i]

for each e ∈ E , where optimal consumption is given by:

ce,i =
(
u′
)−1 (

V ′e,i
)
.

The upwind representation of the HJB equation reads:

ρVe,i = u (ce,i) +
Ve,i+1 − Ve,i

∆a
(se,i)

+ +
Ve,i − Ve,i−1

∆a
(se,i)

− + φ−ee [V−e,i − Ve,i] (40)

where:

(se,i)
+ = max

{
rai + we−

(
u′
)−1

(
V
′F
e,i

)
, 0
}

and (se,i)
− = min

{
rai + we−

(
u′
)−1

(
V
′B
e,i

)
, 0
}

denote the positive and negative parts of savings respectively.

Equation (40) defines a highly non linear system of equations in Ve,i that can only be solved by

iterative methods. We follow Candler (1999) and construct an iterative procedure based on the time-

dependent HJB equation, V l
e,i ≡ V (ai, e, t), and then from an arbitrary initial condition we integrate

in time until the solution is no longer a function of the initial condition, i.e. until it converges to

8The state-constraint boundary condition in Equation (9) is enforced at the lower bound of the state space, amin,

by imposing V
′B
e,1 = u′ (ra1 + we).
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the time-independent HJB, Ve,i. The time-updating is carried out by means of an implicit scheme

in which the value function at the next time step, V l+1
e,i , is implicitly defined by the equation:

V l+1
e,i − V l

e,i

∆
+ ρV l+1

e,i = u
(
cle,i

)
+
V l+1
e,i+1 − V

l+1
e,i

∆a

(
sle,i

)+

+
V l+1
e,i − V

l+1
e,i−1

∆a

(
sle,i

)−
+ φ−ee

[
V l+1
−e,i − V

l+1
e,i

]
(41)

where ∆ is the time step size, cle,i = (u′)−1

[(
V l
e,i

)′]
and

(
V l
e,i

)′
is given by Equation (39).

Equation (41) constitutes now a system of 2 × I linear equations in V l+1
e,i with the following

matrix representation:

AlVl+1 = bl (42)

where Vl+1 =
(
V l+1
el,1

, . . . , V l+1
el,I

, V l+1
eh,1

, . . . , V l+1
eh,I

)′
, bl is a vector with elements ble,i = u

(
cle,i

)
+V le,i/∆

and Al is the block matrix:

Al =

[
Ael −Φhl

−Φlh Aeh

]
with Φ−ee = −φ−eeII and

Ae =



ye,1 ze,1 0 . . . 0 0
xe,2 ye,2 ze,2 . . . 0 0
0 xe,3 ye,3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 · · · ye,I−1 ze,I−1

0 0 0 . . . xe,I ye,I


.

where

xe,i =

(
sle,i

)−
∆a

ye,i =
1

∆
+ ρ+

(
sle,i

)+

∆a
−

(
sle,i

)−
∆a

+ φ−ee

ze,i = −

(
sle,i

)+

∆a
.

and e ∈ E . The iterative algorithm used to find the solution to the HJB equation can be summarized

as follows:

Algorithm D.2 (Solution of the HJB equation) Guess V 0
e,i for each e ∈ E and i = 1, . . . , I.

Then for l = 0, 1, 2, . . . :

1. Compute
(
V l
e,i

)′
using Equation (39).

2. Compute cle,i = (u′)−1
(
V ′e,i

)
.

35



3. Find V l+1
e,i by solving the system of equations defined in (42).

4. If
∥∥∥V l+1

e,i − V l
e,i

∥∥∥ < ε stop. Otherwise, go to step 1.

Solving the Fokker-Planck equations.

Once the optimal consumption has been computed from Algorithm D.2, we proceed to approximate

the solution of the associated Fokker-Planck equations (17) and (18). As before, we use a finite

difference method and apply it to:

0 = − ∂

∂at
[s (at, el) g (at, el)]− φhlg (at, el)− φlhg (at, eh) , (43)

0 = − ∂

∂at
[s (at, eh) g (at, eh)]− φlhg (at, eh)− φhlg (at, el) (44)

which corresponds to an alternative representation of Equations (17) and (18) as shown in Appendix

B. We further need to restrict the solution to satisfy the integrability condition:

1 =
∑

et∈{el,eh}

∞∫
−∞

g (at, et) da. (45)

The system of equations (44) to (45) is discretized as follows:

0 = − [se,ige,i]
′ − φ−eege,i − φe,−eg−e,i (46)

1 =
∑

et∈{el,eh}

I∑
i=1

ge,i∆a. (47)

for each e ∈ E and where ge,i ≡ g (ai, e). To approximate the derivative [se,ige,i]
′ we use the upwind

differentiation scheme:

[se,ige,i]
′ =

(se,i)
+ge,i−(se,i−1)+ge,i−1

∆a +
(se,i+1)−ge,i+1−(se,i)

−ge,i
∆a ,

where se,i = rai + we − (u′)−1
(
V
′
e,i

)
is the optimal savings function obtained from the solution

to the HJB equation. Equation (46) defines a system of 2× I linear equations in ge,i with matrix

representation:

Bg = 0 (48)

where g = (gel,1, . . . , gel,I , geh,1, . . . , geh,I)
′. The matrix B is defined as B = Ã>, where Ã =

−A +
(
ρ+ 1

∆

)
I. The matrix Ã captures the evolution of the continuous-time stochastic processes

{at, et}∞t=0. To impose the integrability condition in Equation (45) we follow Achdou et al. (2014b)

and fix ge,i = 0.1 for an arbitrary i. Then solve the system of equations in (48) for some g̃, and

proceed to renormalize ge,i = g̃e,i/(
∑
e,i g̃e,i∆a).
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E Sampling algorithm

To drawn random observations from the model’s population probability density function g (a | θ0)

we use the following Acceptance-Rejection algorithm:

Algorithm E.1 (Acceptance-Rejection algorithm) Let a ∈ [a,∞) be a random variable with

target probability density function g (a | θ0), and let f be an instrumental density defined in the

support of a such that g (a | θ0) ≤ κf (a) holds for all a in the support and κ > 1 is a known

constant. Then to draw a random number from the target density function:

1. Generate x from f (x).

2. Generate u from U (0, 1).

3. If u ≤ g(x|θ)
κf(x) then set a = x (”accept”); otherwise go back to step 1 (”reject”).

For the implementation of the algorithm we use as instrumental density function that of a

gamma-distributed random variable.
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F Log-likelihood profile for combinations of parameters
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Figure 8. Log-likelihood profile surfaces for selected parameters. The graph shows the log-likelihood
function L (θ | a) for selected parameters as a function of the parameter space on the left column using a
random sample of size N = 5000 generated from the true model. The right column plots the associated
contour plot. The population values for the structural parameters, θ0, are given in Table 1. ”×” locates the
true parameter values, and the combination of parameters that deliver the maximum of the log-likelihood
surface.
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