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Abstract

Research on disaggregate price indices has found that sectoral shocks generate the
bulk of sectoral in�ation variance, but no persistence. Aggregate shocks, by contrast,
are the root of sectoral in�ation persistence, but have negligible relative variance.
We argue that these �ndings are largely an artefact of using simple factor models to
characterize in�ation. Sectoral in�ation series are subject to particular features such as
sales and item substitutions. In factor models, these blow up the variance of sectoral
shocks, while reducing their persistence. Controlling for such e¤ects, we �nd that
in�ation variance is driven by both aggregate and sectoral shocks. Sectoral shocks,
too, generate substantial in�ation persistence. Both �ndings contrast sharply with
earlier evidence from factor models. However, these results aligns well with recent micro
evidence. This has implications for the validation of the foundations of price stickiness,
and provide quantitative inputs for calibrating models with sectoral heterogeneity.
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1 Introduction

The extent and nature of price rigidities are important inputs for many macroeconomic

considerations. A recent body of research aims to shed light on this issue by identifying

the sources of volatility and persistence in disaggregate (sectoral) in�ation rates (Boivin,

Giannoni and Mihov, 2009; Máckowiak, Moench and Wiederholt, 2009). Based on a variety

of estimated dynamic factor models for a number of di¤erent sectoral price data sets, two

conclusions emerge: (i) Sectoral in�ation volatility is mostly due to sector-speci�c distur-

bances, while aggregate shocks explain only a small fraction of movements in in�ation. (ii)

Sectoral in�ation persistence is generated by aggregate shocks. The response to idiosyncratic

or sector-speci�c shocks, by contrast, is close to instantaneous.

The empirical �ndings on the sources of in�ation persistence and volatility are used to

validate foundations of price stickiness. For instance, Máckowiak andWiederholt (2009, 2010)

and Máckowiak et al. (2009) argue for rational inattention as the root of price stickiness

because it can replicate swift responses to sector-speci�c shocks and sluggish adjustment to

aggregate shocks. Carvalho and Lee (2010) show that time-dependent nominal rigidities can

generate similar impulse responses.

More generally, with the increased feasibility of quantitatively evaluating macro-models

with heterogeneity comes the need for moments one can calibrate them to. We argue that

the empirical factor models used cannot serve this purpose. The basic reason is that factor

models are not well suited for any relative assessment of common and idiosyncratic sources

of �uctuations. Factor models yield identi�cation of common factors and their e¤ects re-

liably, under various forms of measurement error or misspeci�cation (Stock and Watson,

1998). However, all other sources of �uctuations, including measurement error, are lumped

together and labeled idiosyncratic. As a result, the residual treatment of idiosyncratic shocks

invalidates almost any inference that involves them.

This issue particularly a¤ects research on price indices, where measurement issues prevail.

The sampling of micro prices across products, stores and cities is a huge endeavor, inherently

subject to measurement error (Shoemaker, 2007). Moreover, price setting is naturally char-

acterized by features such as sales and product substitutions, which have dramatic e¤ects on

evaluations of volatility and persistence (Bils and Klenow, 2004; Golosov and Lucas, 2007;

Klenow and Kryvtsov, 2008; Nakamura and Steinsson, 2008, 2009; Kehoe and Midrigan,

2010; Klenow and Malin, 2010; Eichenbaum, Jaimovich and Rebelo, 2011).

Because factor models are not well-suited to assess the relative importance of sector-

speci�c versus aggregate shocks, the facts (i) and (ii) are potentially misleading. In this

sense, they may well be artefacts rather than stylized facts.
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We reformulate the factor model such that it can cope with general concerns in price

measurement. We then estimate it on U.S. personal consumption expenditures (PCE) price

indices and compare the outcome with a simple factor model (essentially that of Boivin et

al., 2009). The conclusions di¤er drastically. First, sectoral in�ation responds sluggishly not

only to aggregate shocks but also in response to sector-speci�c shocks. Second, the volatility

of idiosyncratic shocks is substantially smaller than previously argued.

The intuition of these results is as follows. Sales and item substitutions are non-persistent

and largely idiosyncratic (unrelated to aggregate conditions) contributors to sectoral in�a-

tion. A simple factor model ignores that much of the volatility in prices is due to such mea-

surement e¤ects. Instead, it lumps them together with more persistent idiosyncratic shocks

to in�ation. Because the variance contribution of sales and substitutions is substantial, the

resulting composite idiosyncratic process will look very volatile and rather non-persistent.

The paper is organized as follows. We start by reproducing the so-called stylized facts

using a simple factor model. Then, in Section 3, we lay out what can go wrong with factor

models for in�ation indices. Section 4 speci�es our benchmark factor model that is able to

cope with these concerns. Subsequently, in Section 5, we estimate the benchmark model

for PCE data and compare it to the stylized facts. In Section 6 we discuss aggregation,

validation and alternative interpretations. After assessing the robustness of our conclusions

in Section 7, we conclude.

2 A simple factor model for sectoral in�ation

Consider the following decomposition of sectoral in�ation �it into a common and a sector-

speci�c component

�it = COMit + SECit (1)

= �0iCt + eit: (2)

Here, COMit = �0iCt, and Ct is a N � 1 vector of common factors. These factors are
distilled from a large cross-section of macroeconomic and/or sectoral time series, Xt. The

factor loadings �i measure the dependence of in�ation in sector i on aggregate, or common,

conditions. The remainder, eit, is a purely sector-speci�c scalar process. The dynamics of

sectoral in�ation originate from either the common component or the sectoral component,
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through

Ct = �(L)Ct�1 + vt; (3)

eit = �i(L)eit�1 + uit: (4)

With this kind of decomposition at hand, Boivin et al. (2009) and Máckowiak et al.

(2009) decompose the variance, �2(�it); and persistence, �(�it); of sectoral in�ation into a

common and a sector-speci�c part.1

As a quantitative reference for what follows, we use the data of Boivin et al. (2009) to

estimate the model (1)-(4). The data for �it are monthly PCE price indices for 190 sectors

over the period 1976:1-2005:6. We extract 5 common factors Ct from a total of 653 monthly

series. In particular, Xt consists of 111 macroeconomic indicators, 190 sectoral PCE and 154

Producer Price Index (PPI) in�ation series as well as 190 sectoral PCE quantity series. In

addition, Xt contains 4 PCE price aggregates and the corresponding quantity aggregates.2

We set lag length to 13 for all lag polynomials, in analogy to Boivin et al. (2009), though

results are very similar for standard lag selection criteria.

Figure 1 plots the breakdown of PCE in�ation variance and persistence into a common

and a sector-speci�c component across all sectors. Comparing the upper and lower left plots,

it is clear that in�ation variance is primarily induced by sector-speci�c shocks. The variance

contribution of common shocks, by contrast, is concentrated toward zero. The right-hand

plots of the �gure show the decomposition of persistence across sectors. Sectoral shocks

generally do not tend to cause much persistence. The distribution of persistence of the

sectoral component is relatively �at, with the median sector having no persistence at all.

The picture is dramatically di¤erent for the persistence of the aggregate component. Its

distribution across sectors is strongly negatively skewed, with almost all sectors bunching up

at very high levels of persistence.

These results are fully in line with those of Boivin et al. (2009) and Máckowiak et al.

(2009). In sum, from both the literature and our own simple factor model two seemingly

1There are di¤erent ways to estimate such a decomposition. Boivin et al. (2009) take a two step approach
in which one �rst retrieves the common factors by principal components analysis, and subsequently estimates
the observation equation (2) and the transition equations (3) and (4). Máckowiak et al. (2009) opt for a
Bayesian state-space model in which this is done jointly.

2We closely follow Boivin et al. (2009), with two minor exceptions. First, we do not force the Fed Funds
rate to be a separate factor. Second, we estimate the observation equation by maximum likelihood, which is
useful for later reference. Neither di¤erence is quantitatively important for what follows.
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Figure 1: Benchmark model - variance and persistence
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Note: In�ation is standardized, such that �2(�it) = 1;8i. Following Boivin et al. (2009), persistence is
measured as the sum of the polynomial coe¢ cients estimated for COMit, and SECit. There is no natural
lower bound on this persistence measure. To maintain visibility in the �gures, we limit the scale to [-1,1].
The medians -green x�s- and histograms take into account all sectors.

robust conclusions emerge. Across sectors,

Stylized fact 1 : �2(COMit) < �
2(SECit)

Stylized fact 2 : �(COMit) > �(SECit) � 0:

In words, for almost all sectors, in�ation volatility is predominantly driven by non-persistent

sector-speci�c shocks, while in�ation persistence is due to the common component.
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3 Sales, substitutions and measurement error in factor

models

3.1 Prices and measurement

The scope for measurement error in the collection of prices is widely recognized. Shoemaker

(2007) provides variance estimates associated with sampling. Evaluations of persistence,

too, almost invariably discuss the scope for measurement error. Bils and Klenow (2004)

and Boivin et al. (2009) are but two examples. The micro price setting literature more

generally is concerned with sales and forced item substitutions (Golosov and Lucas, 2007;

Klenow and Kryvtsov, 2008; Nakamura and Steinsson, 2008, 2009; Kehoe and Midrigan,

2010; Eichenbaum et al., 2011). There is a consensus view that prior to evaluating volatility

and persistence, one should �lter sales and substitutions.

Both sales and substitutions will impart particular short-run dynamics on in�ation. Sales

are changes in the price level that are undone after a brief period of time. In this paper we

use the most restrictive and unambiguous sales de�nition among the various measures used

by Nakamura and Steinsson (2008). This de�nition is the one-period symmetric �V-shaped�

pattern of the price level illustrated in the top row of Figure 2. Sales generate negative

autocorrelation in in�ation. An item substitution implies a change in the measured price

level that does not necessarily re�ect an actual decision to change price, but nevertheless

generate a one-o¤ blip in observed in�ation. This is shown in the bottom row of Figure

2. To summarize, both sales and substitutions a¤ect volatility (positively) and persistence

(negatively) in observed in�ation. To correctly measure volatility and persistence of in�ation,

one should control for these two measurement issues.3

3.2 Factor models and measurement error

Factor models perform well in the presence of measurement error or misspeci�cation, as

shown in, among others, Stock and Watson (1998). This statement is, however, subject

to an important quali�cation. The excellent performance of factor models relates to the

identi�cation of the common factors (Ct) and their loadings (�i). It does not pertain to

inference on the residual.

This quali�cation is not always addressed in applied work. At times, this may well be

innocuous. In research on prices, however, it is not. The reason is that measurement error

in general, and sales and substitutions in particular, are important additional sources of

3A separate issue is to what degree these measurement issues are reduced by aggregating from the product
level to the sectoral level. We address this issue quantitatively and in detail in Section 6.1.
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Figure 2: Sales and Substitutions
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sector-speci�c volatility.4 Hence, in a factor model sales and substitutions will be subsumed

in the residual eit. But this points to a clear form of misspeci�cation in the simple factor

model (1)-(4): eit is not a scalar process. Instead, it has multiple components.

3.3 Sales, substitutions and factor models

To convey the intuition of why the dimensionality of eit matters for the study of in�ation

variance and persistence, consider the following example. Suppose in�ation in sector i is

driven by an aggregate component, COMit as before, an AR(1) sector-speci�c shock Pit,

with �(Pit) > 0, and an additional sector-speci�c component Sit, that captures sales and/or

substitutions. Let Sit have positive variance, �2(Sit) > 0; and be orthogonal to Pit; Sit ? Pit.
4This is not to say that there cannot be an aggregate component to sales or substitutions. Rather, if

there is one, a factor model is able to control for it, provided the number of common factors is su¢ ciently
large.
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Then

�it = COMit + SECit = �
0
iCt + Pit + Sit| {z }

eit

�2(SECit) = �2(eit) = �
2(Pit) + �

2(Sit)

�(SECit) = �(eit) = �(Pit + Sit) =
�2(Pit)�(Pit) + �

2(Sit)�(Sit)

�2(Pit) + �2(Sit)
:

Concerning persistence, it is apparent from Figure 2 that �(Sit) 6 0. More speci�cally,

substitutions result in uncorrelated spikes in in�ation, while sales generate autocorrelation

of -0.5. It is then immediate that

�2(SECit) > �2(Pit)

�(SECit) < �(Pit):

In words, sales and substitutions make the sector-speci�c component of a factor model seem

more volatile and less persistent. Interestingly, in the above example, this works exactly in

the direction of the stylized facts: simple factor models have invariably found sector-speci�c

shocks to be very volatile and non-persistent.5

From the literature that analyses product-level prices, it is well known that the scope for

sales and substitutions is huge. Cross-sectional heterogeneity aside, estimates for the monthly

frequency of sales range from 7.4% (Nakamura and Steinsson, 2008) to over 20% (Klenow

and Kryvtsov, 2008; Kehoe and Midrigan, 2010), and 3.4% (Bils and Klenow, 2004) to 5%

(Nakamura and Steinsson, 2009) for item substitutions. The size of price changes induced

by sales is also large - the median sale is 2.6 times the size of the median regular price change

according to Nakamura and Steinsson (2008). Combined with the possibility of the biases

in variance and persistence in the presence of sales and substitutions described above, this

calls for a re-evaluation of the �ndings from simple factor models of sectoral in�ation.

4 An extended factor model

To control for the e¤ects of sales and substitutions we extend the simple factor model. We

will refer to this extended model as the benchmark model. In eq. (2), as before, sectoral

in�ation �it loads on a number of common factors Ct that evolve according to eq. (3). At the

idiosyncratic level (SECit = eit), in�ation is still driven by a persistent process, Pit, but now
5Note that in the example, one would expect the identi�cation of the factors and the estimation of factor

loadings to be largely una¤ected (Stock and Watson, 1998). The biases we study should therefore have
negligible impact on studies that solely focus on aggregate components, e.g. Reis and Watson (2010).
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also contains two additional components. On the one hand, we allow for an iid�component,
Iit, that serves to absorb item substitutions. On the other hand, we introduce a moving

average component Mit that serves to absorb the pattern implied by sales. Thus, the sector-

speci�c component, previously eq. (4), now becomes

eit = Pit + Iit +Mit (5)

where

Pit = �i(L)Pit�1 + "it (6)

Iit = �it (7)

Mit = �it � �it�1 (8)

and

("it; �it; �it)
0 � N(03�1; D); D1=2 =

264 �
"
i 0 0

0 ��i 0

0 0 ��i

375 :
The three (unobserved) components Pit; Iit and Mit have distinct persistence properties,

and mutually orthogonal shocks "it; �it and �it. We estimate the above factor model on the

same data as Boivin et al. (2009). More precisely, we retain the factors from the simple

model and estimate, for each sector, using maximum likelihood and the Kalman �lter, the

observation equation (2) accounting for (5)-(8).6

While the distinct persistence properties in the above speci�cation ensure theoretical

identi�cation, this does not reveal much about the empirical performance of the estimator in

�nite samples. In Appendix A we document the favorable properties of the multi-component

maximum likelihood procedure for various data-generating processes (DGP) of interest. In

short, when the DGP has multiple components, the estimator identi�es multiple components

and estimates persistence close to that of the DGP. Not surprisingly, for lower underlying

persistence, the estimator has lower precision. Importantly, estimating single component

processes (ARs) on multi-component data generates estimates not even in the ballpark of

the true persistence. On the other hand, when the DGP truly is a single component process,

6Note that when �i(:) has zero coe¢ cients at all lags, there is an identi�cation issue, as the likelihood is
then �at in ��i and �

"
i . If this occurs, we set �

"
i = 0; such that Pit = 0;8t and Iit absorbs all the variance

allocated to Pit. Related, at �"i = 0 the likelihood is �at in �i(L); 8L. Similarly, we then set zero coe¢ cients
at all lags. However, these cases hardly occur in practice. In other words, these ridges are typically located
away from the likelihood�s maximum. We have also estimated Bayesian versions of the model. While these
make it easier to achieve identi�cation through the prior, they also tend to attribute non-zero prior variance
to each component, which we prefer to not impose.
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estimating a multi-component process does not imply substantial biases.

5 Re-evaluating the stylized facts

5.1 Model selection

Observe that the benchmark factor model, through eq. (5), nests the simple factor model,

via eq. (4). Therefore, standard model selection criteria are available to choose between the

simple model and the benchmark factor model. If the new components Iit and Mit are of

no importance, the increase in the likelihood of the benchmark factor model relative to the

simple model will be marginal. Selection criteria penalizing for the additional number of

parameters (i.e. ��i , �
�
i ) will then favor the more parsimonious simple model.

Table 1 shows that in almost 90% of the sectors the data is better described by the

benchmark factor model than by the simple model. In only 12% of all sectors is there no

notable improvement in terms of �t by allowing multiple components at the sectoral level.

Table 1: Model selection criteria

Simple Benchmark
AIC 12% 88%
SBIC 12% 88%

Table 2 provides an alternative view on the estimated benchmark factor model. It char-

acterizes sectors by the relevance of their idiosyncratic components.7 A number of features

stand out. First, all sectors have a persistent component. Second, for more than half of the

sectors both I andM play a role. Third, only 10% of the sectors are well captured by a single

component process.8 Thus, from this perspective too, the scope for additional components

is substantial.

5.2 Variance

The additional components are also quantitatively important. Figure 3 decomposes the

variance of the sectoral component into P; I and M for all sectors. A point at the origin

implies that all the sectoral variance is attributed to the I component. A sector located

at the top corner signi�es 100% of its sectoral variance stems from the P component, and

7For the purpose of this table, we consider a component irrelevant for a particular sector if it accounts
for less than 1% of the variance in the sectoral component.

8Not surprisingly, these are also the sectors for which the information criteria select the simple model
over the extended model.
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Table 2: Sectors and idiosyncratic components

Components % sectors
P 10%
I 0%
M 0%
P + I 24%
P +M 14%
I +M 0%
P + I +M 52%

analogously the right bottom corner signi�es �2(SECit) = �2(Mit). If a sector is located on,

say, the I � P axis, this implies it has no M component. The key message from Figure 3

is the enormous degree of heterogeneity across sectors. Further details about the variance

decomposition are also documented in Table 3. First, in half of the sectors, most of the

variance in SEC is due to P . Conversely, the other half of the sectors have most of their

sectoral variance coming from sales and substitutions. Second, substitutions appear to be

quantitatively more important than sales at the sectoral level.

At face value, are these numbers reasonable? Micro evidence conveys similar magnitudes.

As discussed in Section 3.3, product-level data indicate that sales are not only very frequent,

but also tend to be large in magnitude. Substitutions are far less frequent, but can have

important e¤ects on measured dynamics nonetheless (e.g. Nakamura and Steinsson, 2009).9

In addition, heterogeneity between sectors prevails in micro data, too.

Table 3: Variance decomposition - SEC

Median Mean
P 0:51 0:51
I 0:28 0:32
M 0:12 0:16

Table 4 shows, for each component, the median and mean variance contribution to �it
across sectors. As expected, the variance contribution of the common component is around

10-15%, consistent with the evidence in the literature. The remaining 85-90% in�ation

variance is driven by sector-speci�c shocks. But as the next three rows in the table (and

Figure 3) indicate, a non-negligible part of the sectoral variance is due to the I and M

component. The median contribution of the persistent sectoral component P to total sectoral

9High frequency of sales (or substitutions) in the underlying micro data of the indexes does not necessarily
translate into a high variance contribution of the M (I) component. We elaborate on this issue in Section
6.2.
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Figure 3: Variance contributions - SEC
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in�ation is 43%.

Table 4: Variance decomposition - in�ation

Median Mean
COM 0:10 0:17
SEC 0:89 0:85
P 0:43 0:44
I 0:25 0:27
M 0:10 0:14

Factor models in the literature have the sharp result that for the median sector, sector-

speci�c shocks are almost an order of magnitude more important than aggregate shocks. This

large di¤erence dominates any cross-sectional heterogeneity. Taking the ratio of common to

sectoral variance contributions in the simple model, it appears that only 5 out of 190 sectors

(3%) are more a¤ected by aggregate shocks than by sectoral shocks. The �rst row of Figure

4 shows that result, with almost no mass below 1.

However, simple factor models ignore that much of the variance of the sectoral component

is driven by sales and substitutions. Filtering those out, the benchmark model estimates
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sectoral shocks to be three to four times as volatile as aggregate shocks for the median

sector, as is apparent in the second row of Figure 4. Importantly, aggregate shocks are more

important than sector-speci�c shocks for one sector in four. Thus, while sectoral shocks tend

to dominate, this is certainly not true for all sectors.

Figure 4: Variance ratios
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Note: Due to the presence of sectors with virtually no variance in the common component, values above 10
are truncated at 10.

5.3 Persistence

Because sales and substitutions generate non-negligible sector-speci�c variance, they are

likely to in�uence evaluations of persistence. In Section 3.3 we showed how multiple com-

ponents could lead to underestimating persistence for the simple example of an AR(1) data

generating process. For more elaborate processes (e.g. with longer lags) and persistence

measures (e.g. sum of polynomial coe¢ cients) the direction and size of the bias induced by

sales and substitutions is less clear cut a priori. Whether persistence in the simple factor

model is substantially biased is thus ultimately an empirical question.
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Figure 5 therefore compares persistence in the simple model (on the x-axis) to persistence

in the benchmark factor model (y-axis). The result is overwhelmingly clear: 89% of all sectors

lie above the 45�-line. In other words, the simple factor model substantially underestimates

the persistence of sectoral shocks. The two right-hand quadrants contain sectors that exhibit

positive persistence in the simple factor model (about 50 % of all sectors). For these, the

median bias in persistence is 45%. In the upper left quadrant, the benchmark factor model

�nds positive persistence, where the simple model fails to detect any. This quadrant contains

16% of all sectors. For the remaining sectors, in the bottom left quadrant, neither of the

factor models �nd any positive persistence.

Figure 5: Persistence - Bias

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1
­1

­0.8

­0.6

­0.4

­0.2

0

0.2

0.4

0.6

0.8

1

Simple: SEC

B
en

ch
m

ar
k:

 P

These biases substantially alter the view on the persistence of sectoral shocks. The top

row of Figure 6 �rst reprints the cross-section of persistence measures in the simple model.

It is a rather �at distribution, with the median sector having zero persistence. This is

the second stylized fact. The benchmark factor model (bottom row) shows that, actually,

sectoral persistence is strongly negatively skewed. A lot of sectors cluster at very high levels

of persistence. For the median sector, persistence is estimated at just above 0.4.
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Figure 6: Persistence - Simple vs. benchmark factor model
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5.4 Facts or artefacts?

In this section we have re-evaluated the two stylized facts. In our view, they appear to be

artefacts. The �rst stylized fact in the literature is that the variance of sector-speci�c shocks

is almost an order of magnitude higher than aggregate shocks across sectors. However,

this ignores that much of the variance of the sectoral component is driven by sales and

substitutions. Filtering those out, we estimate sectoral shocks to be three to four times as

volatile as aggregate shocks for the median sector. Importantly, heterogeneity across sectors

is large and we �nd that aggregate shocks are more important than sector-speci�c shocks for

one sector in four.

The second stylized fact is that median persistence of sector-speci�c shocks is zero and,

accordingly, persistence in sectoral in�ation almost exclusively driven by aggregate shocks.

Filtering out sales and substitutions, we eliminate a bias present in previous estimates and

obtain a median persistence of the sectoral component around 0.4. The mode of this persis-

tence is around 0.8.

This establishes the main result of the paper - the two so-called stylized facts are every-
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thing but facts. Rather, they are an artefact of failing to appropriately account for sales and

substitutions in simple factor models. In the remainder of the paper we discuss alternative

interpretations, quantify aggregation properties from micro to sector-level indexes, validate

the components in the benchmark model with evidence from micro studies and provide

numerous robustness exercises.

6 Discussion

6.1 Aggregation

Since sectoral price indices are combining price quotes across multiple cities, stores and

products, one might expect sales, substitutions and general measurement error to average

out at the sectoral level. While there de�nitely is scope for aggregation to reduce the need

for our additional components, there are a number of elements that reduce the tendency of

these components to be aggregated away at the sector level and at the sampled (monthly)

frequency. In what follows, we �rst discuss aggregation under ideal conditions - uncorrelated

homogenous-size price changes. We then discuss and quantify two aspects that decrease the

power of aggregation: correlated sales or substitutions and heterogeneity in the size of price

changes.

The discussion below concerns what fraction of the volatility of product-level sales and

substitutions remains at the sector level. But let us start by stating that the dynamics,

in particular the persistence properties, induced by these phenomena remain unchanged by

aggregation: An iid movement induced by substitution at the product level induces an iid

movement in the corresponding sector index. Similarly for the MA component induced by

sales.10

10Recall eq. (8), which at the sector level yields

Mit =
X
j

�
�jit � �jit�1

�
where j indexes products within a sector and �jit is uncorrelated across t. Then V ar(Mit) = 2V ar(�ji) and
autocorrelation at the sector level is

� (Mit;Mit�1) =
1

V ar(Mit)
Cov

0@X
j

�
�jit � �jit�1

�
;
X
j

�
�jit�1 � �jit�2

�1A
=

1

V ar(Mit)
Cov

0@X
j

�
��jit�1

�
;
X
j

�
�jit�1

�1A =

= �
V ar

�P
j �jit�1

�
V ar(Mit)

= �0:5
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The �rst reason product level measurement errors do not completely cancel out at the

sectoral level is that the number of product prices sampled per month is limited. The

consumer price index (CPI), which is the main source of the sectoral PCE price indices we use,

is based on 70.000-80.000 prices across 388 entry-level items (ELIs) roughly corresponding

to the PCE sectors we study, yielding a mean number of observations slightly above 200

product prices per ELI/PCE sector and month. Theoretically, in absence of any aggregation

problems, the ratio of the standard deviation of the index, �index; to the standard deviation

of the product price, �product, is 1p
N
. This implies that for the sector with the mean number

of observations 1=
p
200 = 7% of the variation induced by sales and substitutions at the

product level would remain at the sector level.11 The �rst column in Table 5 present the

corresponding numbers for the empirically relevant range of sample sizes.

Correlated sales or product substitutions could occur due to sector-speci�c shocks: low

demand can build up inventory and induce larger sales, technical progress can generate prod-

uct turnover and induce product substitutions, etc.12 To illustrate the impact of correlated

sales or substitutions we perform the following exercise. For a sample length equal to ours

(T=353) we randomly generate sequences of sales (the outcomes are indistinguishable for

the case of substitutions). At any point in time, an individual product is on sale with a par-

ticular frequency. If there is no sale, the price remains constant. When there is a sale, the

price change is a sum of two random components from the normal distribution: A common

component generates correlated variation across products within an index and an idiosyn-

cratic component generates uncorrelated variation. We generate many product level price

series, and construct in�ation indices from them, for a variety of numbers of goods in the

index, N . In this exercise the only reason that the theoretical prediction of the e¤ect of

aggregation, 1=
p
N; does not obtain is that the size of sales contain a common component

that makes them correlated. We let the correlation equal 0:25. In Table 5 we present the

results for a range of frequencies, recalling from Section 3.3 that micro evidence indicates

that the median monthly frequency of sales are in the range from 7.4% to over 20%, and

3.4% to 5% for item substitutions. The �rst, and least surprising, result to note is that cor-

related sales do not aggregate away very well. Secondly, aggregation actually works better

the lower the frequency is. The intuition is that for low frequencies the realized correlation

which coincides with the product-level autocorrelation of Mjit.
11Whether that 7% represents a large fraction of the index�s variance, which also contains regular price

changes, is a di¤erent question. It depends on the relative volatility of sales and substititions vs. regular
price changes at the product level. Micro level data suggest that sales and to a smaller degree, substitutions,
may well cause substantially more volatility than regular price changes (see Section 3.3 for details). This
makes e¤ectively controlling for them at the index level all the more needed.
12Note that the price data we work with is seasonally adjusted, so correlation in sales that follow a seasonal

pattern are �ltered out.
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tends towards zero as most prices are unchanged. To speci�cally address the question of

how well aggregation works for the median sector, we read from the table that for N = 200;

the ratio of the standard deviation of the index relative to the standard deviation of its

underlying products �̂index
�product

is roughly 0:2 at the empirical frequency of sales and roughly 0:1

at the empirical frequency of substitutions. Interestingly, results at the empirical frequency

of sales are approximately unchanged for N = 500 and N = 1000: In other words, roughly

20% (10%) of the product level volatility from sales (substitutions) remains at the sector

level if correlation is 0.25. This is substantially more than for uncorrelated price changes.

Table 5: Aggregation and sales/substitutions - correlation

Frequency
Number of products in index: N 1=

p
N 0.25 0.1 0.05 0.01

50 0.1414 0.2849 0.2110 0.1796 0.1495
100 0.1000 0.2685 0.1865 0.1497 0.1113
200 0.0707 0.2595 0.1728 0.1319 0.0864
500 0.0447 0.2536 0.1640 0.1205 0.0670
1000 0.0316 0.2519 0.1611 0.1162 0.0591

Note: The table reports the ratio of the standard deviation of an index, �̂index, relative to the (homoge-
nous) standard deviation of its underlying products, �product; for various N and frequencies;but for a �xed
correlation of 0:25. The �rst column is the theoretical relation without correlation and the four subsequent
columns the small-sample (T=353) results across 5000 replications.

It is plausible that not all products within a sector exhibit the same unconditional size of

sales or substitutions. Heterogeneity in size of sales or substitutions within a sector weakens

aggregation. Intuitively, the degree to which various sales or substitutions cancel out at the

sector level decreases with size heterogeneity.

To quantify the e¤ect of heterogeneity we perform a similar exercise to the one above. We

let the size of the sale or substitution be a random draw from a normal distribution whose

standard deviation is drawn from a uniform distribution to induce heterogeneity in size. As a

rough reference for the within-sector size heterogeneity we use heterogeneity between major

groups from Nakamura and Steinsson (2008). It shows that the standard deviation of the

sales size, �size; is one third of the mean sales size, �size, for both of the sample periods they

report.

We report the results for a range of heterogeneity in Table 6. We note that the quanti-

tative impact of heterogeneity in size is limited for this range of heterogeneity. Results are

indistinguishable for sales and substitutions, and independent of frequency.

In this section we have quanti�ed how much of product-level variation in prices due to

sales and substitutions remains at the sector-level. We �rst noted that the empirical sample

size in the mean sector is limited. This makes it likely that sales and substitutions generate
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Table 6: Aggregation and sales/substitutions - heterogeneity

�size=�size
Number of products in index: N 1=

p
N 0.95 0.75 0.5 0.25 0.05

50 0.1414 0.1952 0.1761 0.1577 0.1456 0.1416
100 0.1000 0.1376 0.1247 0.1118 0.1031 0.1000
200 0.0707 0.0973 0.0882 0.0790 0.0728 0.0707
500 0.0447 0.0616 0.0558 0.0500 0.0460 0.0447
1000 0.0316 0.0436 0.0395 0.0353 0.0325 0.0317

Note: The table reports the ratio of the standard deviation of an index, �̂index, relative to the mean of
the heterogenous standard deviation of its underlying products, �product; for various ratios of the within
sector standard deviation of the size of sales, �size; to the mean size of sales, �size. The �rst column is the
theoretical relation without heterogeneity, the four subsequent columns the small-sample (T=353) results
for lower frequencies of price change across 5000 replications.

signi�cant variance at the sectoral index level. We then separately quanti�ed the impact

of two factors that further weaken aggregation: correlation and heterogeneity. Empirically,

across sectors, there are di¤erent numbers of products per sector, varying degrees of het-

erogeneity across products within each sector, and varying degrees of correlation between

those products. Each of these factors, and possible interactions between them a¤ect how

well aggregation works.

6.2 Validation across sectors - sales and substitutions

The relationship between the variance of our sales (substitutions) component and the fraction

of price changes that are sales (substitutions) is not predicted to be one-to-one. Several

factors, including heterogeneity across sectors in the relative size of sales price changes and

in aggregation properties, weaken this link.13 Keeping this in mind, we nevertheless provide

an informal validation of our results by examining to what degree the presence of the I andM

components in our benchmark factor model coincide with Nakamura and Steinsson�s (2008,

henceforth NS) product-level CPI data evidence. Given the tenuous theoretical relationship

we focus on the extreme results: we compare whether a sector has a sales or substitution

component at all in our results to the prevalence of sales and substitutions in that �major

13For an additional reason why aggregation need not preserve the relation between our components and
the micro data, consider the following extreme example. Two sectors A and B each have 100 products
sampled. In sector A all products have sales, while in sector B only 1 product is ever on sale. Sales in sector
B have no hope of averaging out across products, and will thus generate an M component in the index of
sector B. The index for sector A, by contrast, may well not be a¤ected much by product-level sales, as they
have the scope to average out across products. Thus, despite being a sales-intensive sector, sector A may
not require a M component. The opposite is true for sector B, despite having very few sales at the micro
level. A similar logic applies to substitutions.
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group�according to NS.14 As documented above in Table 2, sales and product substitution

components, M and I respectively, are only present in a subset of the PCE sectors we study.

In particular, Table 2 documents that 24% of sectors have no M component while 34% of

sectors have no I component.

NS document that Utilities, Vehicle fuel, Services (excl. travel) and Travel have virtually

no sales, and at the opposite end of the spectrum that Apparel, Household Furnishing and

Food (processed and unprocessed) have the highest prevalence of sales.

Comparing our results for which sectors lack a sales component we note that they coincide

to a reasonable degree with NS. Key utilities sectors (Electricity and Gas) have no sales

component. Gasoline, on the other hand, does have a sale component contrary do what NS

results indicate.15 In line with NS most travel sectors (Taxicab, Bus and Other) have no

sales component. Services (excl. travel) is a very diverse group. We note that an above

average fraction (31%) of the PCE service sectors lacks a sales component, in line with NS

results.

Switching to sectors which have lots of sales according to NS, we con�rm that sectors

within Apparel (clothes for men, women and children, respectively) have a sales component.

Four of the �ve Household Furnishing sectors have a sales component. For food sectors a

non-negligible fraction of them lack a sales component, contrary to the evidence in NS.

The analogous exercise for product substitution validates our method by lining up very

well with NS. Their product-level data indicates that product substitution is most common

in Apparel and Transportation goods (mainly cars), and least common in Vehicle fuel and

Utilities. We �nd no substitution component in Gasoline or the utilities sectors Electricity

and Water. Furthermore, and also in line with NS, we �nd a substitution component in all

three clothes sectors and in all of the nine transportation good sectors.

To summarize, we �nd that our results on which sectors have sales and substitutions

coincide roughly with what NS �nd. But recall that this is only indicative in terms of

validation of our method, as several factors may distort the relation between product level

sales and substitutions and the corresponding sector level component.

6.3 An alternative rationale for I and M

Note that classical uncorrelated measurement error has very similar e¤ects to those of sales

and substitutions. In particular, measurement error in prices will result in negative auto-

14An additional factor that complicates comparisons is the imperfect mapping between PCE sectors and
the CPI �major groups�and ELIs that NS reports.
15The contradiction is with NS�s benchmark results which are based on the BLS �ag for sales. But, NS

explain why the �V-shaped��lter �nds substantial amounts of sales for gasoline, also on product-level data.
The issue is caused by high volatility in the price in combination with a tendency for discrete price changes.
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correlation in in�ation and can thus generate a M component. Analogously, measurement

error in in�ation will result in an iid-component, similar to I. As such, measurement error

is observationally equivalent to sales and substitutions.

First, whether it is sales and substitutions or other measurement issues is not the primary

concern. Irrespective of which it is, it seems important to �lter out such non-fundamental

variation prior to evaluating variance and persistence of sectoral shocks. Our benchmark

factor model does just that.

Second, for some purposes, it may actually be useful to quantify how much of the non-

persistent sector-speci�c �uctuations is due to measurement error, rather than due to sales

or substitutions. For instance, many studies make conjectures about plausible degrees of

measurement error, in order to verify whether it could drive their results (e.g. Bils and

Klenow, 2004). To inform such questions, we here adapt our factor model to shed light on

the importance of measurement error, relative to sales and substitutions.

One way to overcome the observational equivalence between sales and substitutions on the

one hand, and measurement error in prices and in�ation on the other, is to use quantities. A

priori, there is no apparent reason to expect measurement error in prices to a¤ect quantities.

Sales and substitutions, by contrast, can be expected to in�uence quantities. In Appendix

B, we lay out an extension to the factor model that separates measurement error from sales

and substitutions. We here summarize the results of that model speci�cation brie�y, while

the appendix contains the results on variance and persistence across sectors.

Table 7: Variance decomposition - measurement error

Benchmark model Accounting for measurement error
Median Mean Median Mean

COM 0:10 0:17 0:11 0:16
SEC 0:89 0:85 0:89 0:85
P 0:43 0:44 0:47 0:46
I 0:25 0:27 0:18 0:23
M 0:10 0:14 0:07 0:15
� � � 0:11 0:16

Table 7 indicates that for the median sector, 11% of in�ation variance is due to mea-

surement error (�). In the benchmark model (without quantities that isolates measurement

error), the I and M components seem to soak up that variance, as expected. Nevertheless,

even in the model that accounts separately for pure measurement error, the I and M com-

ponents still appear very relevant. Importantly, the conclusions for the relative variance and

persistence of common and sectoral shocks remain unchanged from our benchmark model.
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7 Robustness

The main results of our benchmark model go through for many variations in the data consid-

ered. First, consider the e¤ect of shortening the sample period to 1984-2005. This subsample

is also considered in Boivin et al. (2009), and serves to isolate the results from the very di¤er-

ent behavior of macroeconomic aggregates prior to and during the early eighties disin�ation

and the start of the so-called Great Moderation. Figures 7 and 8 document the variance and

persistence of the various components for this period. Compared to the full sample results

documented in Figure 4 the relative variance of aggregate shocks is substantially smaller

already in the simple model. This is not unexpected, since decreased variance of aggregate

conditions is exactly what the Great Moderation represents. Comparing the relative impor-

tance of aggregate shocks in the simple factor model with that of the benchmark model,

which accounts for sales and substitutions, again shows how the former model substantially

overestimates the relative importance of the sector-speci�c component. While the traditional

approach suggests that in the median sector idiosyncratic shocks are roughly 14 times more

important than aggregate shocks, the benchmark model �nds this to be only 6 times as

large. One could argue that this high relative variance of idiosyncratic shocks was particular

to the Great Moderation era and might well disappear when considering more recent data.16

Turning to persistence in Figure 8, the results for the subsample are very similar to those for

the full sample. A simple factor model reveals no persistence due to sectoral shocks for the

median sector, while substantial persistence is visible in the model that accounts for sales

and substitutions. Again, one observes the strong concentration of sectors at very high levels

of persistence.

To assess the generality of their results, Boivin et al. (2009) also consider sectoral PPI

series, and document that the stylized facts continue to hold. As an additional robustness

check, we therefore re-estimate the simple model and the benchmark factor model for the PPI

data. Here too, the results are very similar: The simple model con�rms the �rst stylized

fact and estimates sectoral shocks to be 9 times more volatile than aggregate shocks for

the median sector (Figure 9). The benchmark model reduces this ratio to below 4. In

terms of persistence, too, a similar bias appears to be present. As is clear from Figure 10,

the standard, simple approach �nds no persistence (stylized fact 2), while the benchmark

approach indicates substantial persistence.

We now switch from documenting robustness in terms of data to robustness in terms of

model speci�cation. Recall that our sales de�nition, operationalized by eq. (8), is the most

16Unfortunately, a change in the PCE de�nition makes extending the sample and verifying this conjecture
infeasible.
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Figure 7: Variance - subsample
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restrictive among the alternatives in the literature. We also explore a less restrictive sales

de�nition that replaces eq. (8) by

Mit = �m;i(L)Mit�1 + �it

and where identi�cation is achieved by restricting the sum of the lags to be negative, �m;i(1) <

0, while for the persistent component, Pit; we require �i(1) > 0. Also this alternative

speci�cation yields very similar results to our benchmark model, both in terms of volatility

of each component and persistence of Pit.

A �nal robustness exercise consists of reducing lag length of the persistent component, Pit.

The reason for this exercise is that 13 lags might appear to over-parameterize the model, in

particular in the presence of the two additional components. The results are very similar

to our benchmark speci�cation when either imposing 3 lags or using standard lag selection

criteria.
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Figure 8: Persistence - subsample
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8 Conclusion

The variance contribution of idiosyncratic shocks to sectoral in�ation may be a lot smaller

than previous evidence suggests. While earlier factor models indicate that sectoral shocks

are almost ten times as volatile, our estimates point to a ratio of sector-speci�c to aggregate

volatility of three to four for the median sector. Moreover, heterogeneity prevails: for a

quarter of the sectors in our data, aggregate shocks appear to be a more important source of

�uctuations than sector-speci�c shocks. Persistence in in�ation arises from both aggregate

and sector-speci�c shocks. Our results show that the absence of persistence in the response

to sectoral shocks in earlier empirical analysis is method-driven; an artefact.

Our results bring the micro and macro evidence on sluggishness closer together. Initially,

high frequency volatility in sectoral price series seemed puzzling from the perspective of

in�ation inertia at the macro level. Boivin et al. (2009) reconcile this (non-�ltered) fast-

micro and slow-macro evidence by invoking conditionality: it matters whether a shock is

aggregate or sector-speci�c. Our results, by contrast, reveal that there is no con�ict between
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Figure 9: Variance - PPI
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the micro and macro evidence: Applying �lters similar to those used in research on micro

(product-level) price data, thereby taking account of sales and substitutions, one obtains

very similar results. Lower volatility and higher persistence are obtained when sales and

substitutions are accounted for, which is apparent from micro studies such as Nakamura

and Steinsson (2008), Kehoe and Midrigan (2010) and Eichenbaum et al. (2011) as well as

from our benchmark factor model. Thus, our results align well with the micro evidence.

Furthermore, these results contrast starkly with those obtained at both micro and macro

level for non-�ltered data. In particular, prices then appear very volatile, and have low

persistence. This is evident from the simple factor model (Boivin et al., 2009) and micro

studies that do not control for sales (e.g. Bils and Klenow, 2004).

Our results have important implications for model calibration and validation. As dis-

cussed in Máckowiak and Smets (2009), models of rational inattention (Máckowiak and

Wiederholt, 2010) and menu costs (Golosov and Lucas, 2007), for instance, often rely on

sector-speci�c shocks that are an order of magnitude larger than aggregate shocks. Our

analysis suggests that this is not necessarily what sectoral price data convey. Rather, we
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Figure 10: Persistence - PPI
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�nd that in one quarter of all sectors aggregate shocks are a more important source of

�uctuations than sector-speci�c ones.

In light of the above evidence, models of price rigidities should not be rejected because

they fail to generate a sluggish response to aggregate shocks and a fast response to idiosyn-

cratic disturbances. Persistence occurs irrespective of the source of the shock. Finally, there

is a tremendous amount of heterogeneity between sectors in these �ndings, again consistent

with the micro-evidence (Nakamura and Steinsson, 2008).

The results of the present paper also have implications for the appropriate design of core

in�ation indices. The fact that sector-speci�c dynamics are best characterized as multi-

component processes means that sectors should not be excluded from a core index based

on simple statistics such as un�ltered persistence or volatility. Such exclusion-based core

measures are commonly used by central banks, most explicitly by Bank of Canada. The

Federal Reserve�s motivation for focusing on PCE excluding food and energy is a related

short-cut in that direction.

26



References

[1] Bils, M., Klenow, P.J., 2004, �Some evidence on the importance of sticky prices�, Jour-

nal of Political Economy 112, 947-985.

[2] Boivin, J., Giannoni, M.P., Mihov, I., 2009. �Sticky prices and monetary policy: evi-

dence from disaggregated US data�, American Economic Review, 99, 350-384.

[3] Carvalho, C., Lee, J.W., 2010. �Sectoral price facts in a sticky-price model�, New York

Fed, mimeo.

[4] Eichenbaum, M., Jaimovich, N., Rebelo, S., 2011. �Reference prices, costs, and nominal

rigidities�, American Economic Review, 101, 234-262.

[5] Golosov, M., Lucas, R.E. Jr., 2007. �Menu costs and Phillips curves�, Journal of Political

Economy 115, 171-199.

[6] Kehoe, P., Midrigan, V., 2010. �Prices are sticky after all�, NYU and Princeton Uni-

versity, mimeo.

[7] Klenow, P.J., Malin, B.A., 2010. �Microeconomic evidence on price-setting�, in Hand-

book of Monetary Economics Vol 3a, by Friedman, B., Woodford, M. (eds.), Elsevier.

[8] Klenow, P.J., Kryvtsov, O., 2008. �State-dependent or time-dependent pricing: Does it

matter for recent U.S. in�ation?�, Quarterly Journal of Economics 123, 863-904.
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Appendix A: Estimator properties in �nite samples of simulated data
This appendix documents empirical properties of the maximum likelihood estimator used

in the paper. In particular, we simulate data from various one- and multicomponent processes

for sample lengths equal to our data (T = 353). For each of these, we estimate single

component (P , as in eq. (4), henceforth AR) and multicomponent processes (P + I +M , as

in eq. (5)-(8), henceforth PIM). For each process we use one lag for the AR (P ) component.

The Monte Carlo results are based on 100 time series per data-generating process. The data

is generated from

et = Pt + It +Mt

with

Pt = �Pt�1 + "t

It = �t

Mt = �t � �t�1

for the parameter values in Table 8.

Table 8: Data generating processes for arti�cial data

IID AR low AR high PIM low PIM high
� 0 0.5 0.95 0.5 0.95
�2P 1 1 1 .33 .33
�2I 0 0 0 .33 .33
�2M 0 0 0 .33 .33

Note: To facilitate evaluation of the relative importance of the various components, the table speci�es
volatility of the components rather than the innovations. Thus, �2P =

�2"
1��2 ; �

2
I = �2� , �

2
M = 2�2� and the

three shocks are orthogonal and follow ("t; �t; �t)
0 � N(03�1; D).

Consider the last column of Table 8, PIM high. Here all three components are equally

important, and the persistent component is very persistent. Figure 11 shows how, even for

data with a limited time dimension, the estimator has no problem disentangling the various

components.

It is plausible that high persistence makes identi�cation easier. Therefore, now consider

a PIM process with intermediate persistence, PIM low in Table 8. In this case, as appar-

ent from Figure 12, there is more dispersion in point estimates. Persistence tends to be

slightly underestimated (and, accordingly, the volatility of the persistent shock slightly over-

estimated). The M component is still consistently identi�ed, while the I component is not

always easily detected.
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Figure 11: Estimation on simulated data: PIM on PIM high
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Note: Green x�s mark data-generating parameters

Now consider the alternative; estimating an AR speci�cation on these data. Irrespective

of the persistence of the underlying process, estimating an AR fails to detect any signi�cant

amount of persistence, as illustrated in Figure 13 and Figure 14. We interpret these simu-

lations as follows. While for low-persistence multicomponent processes, PIM-speci�cations

may imply substantial imprecision regarding the variances of the components, they allow a

fairly adequate evaluation of persistence. When persistence is high, they are both unbiased

and precise across repeated samples, for the empirically relevant sample lengths. For the

same DGP�s, AR-speci�cations are clearly inadequate. These simulations establish one type

of risk: if the DGP is a multicomponent process, AR estimation will fail to detect persistence.

The question remains as to how PIM-speci�cations perform in the case of AR-DGPs. It

is possible that the cure is worse than the disease. Figure 15 shows that this type of risk is

limited. In particular, for an AR-DGP with high underlying persistence estimating a PIM-

speci�cation comes at little cost. As persistence decreases, see Figure 16, PIM-estimation

attributes some variation to the I component, which entails a minor overestimation of per-

sistence. Taken to the limit, estimating PIM-speci�cations on iid data, as in Figure 17,

identi�cation of separate components is cumbersome: there is a lot of dispersion in all the

estimates. Firstly, however, note that the modes of the distributions are typically located at

the truth. Secondly, for persistence close to zero, the likelihood is �at in certain dimensions.

This occurs as P and I become equivalent. This is further discussed in footnote 6 in the

paper.
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Figure 12: Estimation on simulated data. PIM on PIM low
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Appendix B: Isolating measurement error using quantities
The observation equation for sector i becomes

�it = ��0i Ct + Pit + Iit +Mit + �it (9)

qit = �q0i Ct + �
P
i Pit + �

I
i Iit + �

M
i Mit + & it: (10)

or "
�it

qit

#
=

"
��0i

�q0i

#
Ct +

"
1 1 1

�Pi �Ii �Mi

#264 Pit

Iit

Mit

375+ " �it
& it

#

Here q denotes quantity growth. In addition to the requirement that the three components

P , I andM a¤ect quantities, their persistence properties continue to hold, as in eqs. (6)-(8).

Measurement error in in�ation and quantity growth are denoted by �it and & it respectively.

They are identi�ed because they a¤ect price or quantity respectively, but not both.

In the PCE data used by Boivin et al. (2009) real quantities are available, as part of Xt.

However, real quantities are not measured independently, but calculated as nominal quantity

de�ated by the price index. To ensure that measurement error does not a¤ect the quantity

variable we therefore use nominal quantities.

In eq. (9), as before, the I andM components absorb substitutions and sales, respectively.

The importance of measurement error is now captured separately by the sector-speci�c com-
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Figure 13: Estimation on simulated data. AR on PIM high
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ponent �it. Note that substitutions related to sampling (a product not being available at

the surveyed retailer) will not be captured by the I component in this setting, but instead

by the measurement error component for in�ation, �it.

We allow both the idiosyncratic in�ation and quantity components �it and & it to exhibit

unrestricted autoregressive dynamics. The reason for this �exible speci�cation is that, for

the in�ation equation, for instance, measurement error in prices would generate negative

autocorrelation.

Note that the identi�cation assumption that the P , I andM components a¤ect quantities

does not hold at �:i = 0. This case does not turn out to be practically important. We have

also estimated Bayesian versions where the sector-speci�c loadings are identi�ed through the

prior, with very similar results.

Table 7 in the main text summarizes the results of estimating (9)-(10), subject to (6)-(8).

The following �gures show the results for the relative variance (Figure 18) and persistence

(Figure 19). They are very similar to the results of the benchmark factor model presented

in the main text.

32



Figure 14: Estimation on simulated data. AR on PIM low
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Figure 15: Estimation on simulated data. PIM on AR high
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Figure 16: Estimation on simulated data. PIM on AR low
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Figure 17: Estimation on simulated data. PIM on iid
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Figure 18: Identi�cation using quantities - variance
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Figure 19: Identi�cation using quantities - persistence
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