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1 Overview

This document studies the sensitivity of the optimal carbon tax formulation derived by Golosov,

Hassler, Krusell, and Tsyvinski (2013) ("GHKT"). GHKT show that, under certain assumptions,

the optimal carbon tax-GDP ratio can be solved for in closed form, and does not depend on the

paths of future output, consumption, and technological change. These assumptions include

logarithmic preferences and full depreciation of capital over the course of a decade.

This document relaxes these assumptions and explores the numerical sensitivity of the optimal

carbon tax-GDP ratio to the structure of preferences, depreciation, and technological progress.

It further proposes a slightly modified version of GHKT’s central optimal carbon tax formulation

that approximates the optimal carbon tax in the case of non-logarithmic constant elasticity utility

and non-zero long-run productivity growth.

The remainder of this note is structured as follows. Section 2 reviews the planner’s problem

as presented in GHKT (2013), and then describes our numerical implementation. Section 3

outlines the sensitivity analyses considered, and presents the main quantitative results. Section

4 proposes a modification of GHTK’s formula that approximates the optimal carbon tax in the

case that preferences are not logarithmic and productivity growth is positive. Finally, Appendix

Section 5 compares the numerical model’s benchmark case results with those from the true,

infinite-horizon problem as presented in GHTK (2013).
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2 Model

2.1 Recap of GHKT Model

2.1.1 GHKT General Model

This section reviews the theoretical framework presented by GHKT. As we abstract from un-

certainty throughout this document, we present a simplified, deterministic version of the GHKT

model. A global representative household has preferences over consumption Ct:

∞∑
t=0

βtU(Ct) (1)

There are I production sectors: I − 1 intermediate energy good producing sectors, indexed by

i = 1, ...I, and one final consumption-investment good sector, indexed by i = 0. The final goods

resource constraint is given by:

Ct +Kt+1 = Yt + (1− δ)Kt (2)

whereKt denotes the (aggregate) capital stock. Final good output Yt is produced from technology

F0,t :

Yt = F0,t(K0,t, N0,t,E0,t, St) (3)

where N0,t is labor allocated to the final goods sector, and E0,t = (E0,1,t, E0,2,t, ..., E0,I,t)

denotes a vector of energy inputs. Output further depends on the state of the climate, St,

taken here as the atmospheric carbon stock. All climate change impacts are thus represented as

production damages.

Energy input i is produced from technology:

Ei,t = Fi,t(Ki,t, Ni,t,Ei,tRi,t) ≥ 0 (4)

For energy resources in finite supply - such as petroleum - Ri,t denotes the stock of resource

i still left at the beginning of period t. The resource stock evolves according to:

Ri,t+1 = Ri,t − Ei,t ≥ 0 (5)

Factors are assumed to be perfectly mobile across sectors, implying that:

I∑
i=0

Ki,t = Kt,

I∑
i=0

Ni,t = Nt, and
I∑
i=0

Ei,j,t = Ej,t (6)
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Lastly, energy inputs i = 1, ..., Ig − 1 are assumed to be carbon-based, whereas inputs i =

Ig, ...I are "green" and not associated with carbon emissions. All energy inputs are given in

terms of carbon content (equivalent). Atmospheric carbon concentrations St are thus a function

S̃t of carbon-based energy inputs dating back to the start of industrialization at time −T :

St = S̃t

(
Ig−1∑
i=1

Ei,−T , E
f
−T+1, ..., E

f
t

)
(7)

where Ef
t ≡

Ig−1∑
i=1

Ei,t denotes the sum of fossil fuel inputs in tons of carbon.

The government’s problem is to maximize (1) subject to (2), (3), (4), (5), (6), and (7). As

demonstrated by GHKT, comparison of the planner’s first-order conditions with the decentralized

equilibrium conditions governing the behavior of firms and households suggests that the optimal

allocation is implemented by a Pigouvian carbon tax. This tax is equal to the marginal externality

damages of carbon emissions from energy input i, Λs
i,t:

Λs
i,t ≡

∞∑
j=0

βj
U ′(Ct+j)

U ′(Ct)

∂F0,t+j
∂St+j

∂St+j
∂Ei,t

(8)

Finally, since energy inputs Ei,t are all recorded in tons of carbon, it is moreover the case that:

∂St
∂Ei,t

=
∂St
∂Ej,t

∀i, j,∈ {1, ...Ig − 1}

⇒ Λs
i,t = Λs

j,t = Λs
t

2.1.2 GHKT Benchmark Assumptions

GHKT derive a closed-form expression for the optimal carbon tax-GDP ratio by imposing only

the following assumptions:

Assumption 1 U(Ct) = ln(Ct)

Assumption 2 F0,t(K0,t, N0,t,E0,t, St) = (1−Dt(St))F̃0,t(K0,t, N0,t,E0,t) with

1−Dt(St) = exp(−γt(St − S))

and where S denotes pre-industrial carbon concentrations.
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Assumption 3 The function S̃t is linear with the following depreciation structure:

St − S =
t+T∑
s=0

(1− ds)Ef
t−s

and ds ∈ [0, 1] for all s.

Assumption 4 Full depreciation: δ = 1

Given assumptions (1)-(4), GHKT demonstrate that the optimal carbon tax is a simple

formulation that depends only on discounting, the climate damage parameter γt, and the carbon

depreciation structure:

Λs
t = Yt

[ ∞∑
j=0

γt+j(1− dj)
]

(9)

GHKT’s quantitative analysis parameterizes the carbon depreciation structure as follows:

1− ds = φL + (1− φL)φ0(1− φ)s (10)

where φL denotes the share of carbon emissions that remains permanently in the atmosphere, frac-

tion (1−φ0) of emissions exit the atmosphere immediately (through absorption in the biosphere
and upper ocean), and the remainder of emissions decays at geometric rate φ. Given (10), we

finally arrive at the "Benchmark formulation" for the optimal carbon tax-GDP ratio:

Λ̂s
t ≡

Λs
t

Yt
= γt

(
φl

1− β +
(1− φl)φ0

1− (1− φ)β

)
(11)

The central objective of this note is to study the sensitivity of (11) to relaxing assumptions

(1) and (4). In that case, Λ̂s
t depends also on the future paths of output and consumption (8).

We thus also study the sensitivity of Λ̂s
t to general assumptions about future technological change

in the more general environment without assumptions (1) and (4).

2.1.3 GHKT Benchmark Full Model

GHKT provide a full characterization and quantitative results for optimal carbon taxes and

allocations for the following version of the general model outlined above. Note that assumptions

(1)-(4) are maintained throughout.

Energy Sector: There are three energy sectors: oil, coal, and clean energy. Oil inputs,
indexed by i = 1, are assumed to be in finite supply R0. Oil extraction is assumed to be costless:
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E1,t = Rt −Rt+1 (12)

Coal and clean energy, indexed by i = 2 and i = 3, respectively, are produced using only

labor inputs. Constraint (4) thus becomes:

Ei,t = Ai,tNi,t for i = 2, 3 (13)

Final Goods Sector: The final goods production technology is assumed to be Cobb-

Douglas:

Yt = e−γt(St−S)A0,tK
α
t N

1−α−v
0,t Ev

t (14)

Here, the energy composite Et is given by:

Et =
(
κ1E

ρ
1,t + κ2E

ρ
2,t + κ3E

ρ
3,t

)1/ρ
(15)

with
∑3

i=1
κi = 1.

Carbon Cycle: The history of carbon emissions prior to period zero is dealt with as follows.
Stock S1 denotes the carbon that remains in the atmosphere forever, whereas stock S2 denotes

depreciating atmospheric carbon. These and the total atmospheric carbon stock then evolve

according to:

S1,t = S1,t−1 + φlE
f
t (16)

(S2,t − S) = φ(S2,t − S) + φ0(1− φL)Ef
t

St = S1,t + S2,t

Given (12)-(16), GHKT analytically characterize and numerically solve for optimal allocations

and energy input paths in particular.

Quantitative Implementation: GHKT solve for optimal allocations by combining the

planner’s optimality conditions from the infinite horizon problem (as discussed above) with the

assumption that all oil is used up over the course of a finite time horizon T considered:

T∑
t=0

E1,t = R0 (17)

Since oil usage goes to zero as T approaches infinity, (17) should serve as decent approximation

for suffi ciently large values of T <∞.
Another key feature of the Benchmark case that enables GHKT’s algorithm is that the optimal
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carbon tax-GDP ratio Λ̂s
t is exogenous and constant given assumptions (1)-(4). That is, the

formulation (11) captures the infinite-horizon present value of climate damages without the

need to actually compute output or consumption over an infinite time horizon. However, this

simplification no longer holds in the more general case without assumptions (1) and (4). In the

more general case (8), one needs to know {Yt}∞t=0 and {Ct}∞t=0 to compute the optimal carbon
tax-GDP ratio Λ̂s

t . The next section thus describes our numerical approximation to the planner’s

problem that we use to explore the sensitivity of Λ̂s
t .

2.2 Numerical Model for Sensitivity Analysis

Our numerical model generally maintains the functional forms of the Benchmark GHKT model

(12)-(16), with a few modifications as discussed below. Given the high number of state variables

in the problem, we do not employ value function iteration. Instead, we construct a direct

optimization program that seeks to approximate the planner’s true, infinite-horizon problem as

follows. First, the program directly optimizes over all allocations for T < ∞ periods. After

period T, a continuation value VT is computed as a function of the last direct optimization

period’s carbon stock ST , capital stock KT , savings rate θT−1, oil extraction rate ΘT−1, and the

shares of labor devoted to the production of coal, clean energy, and final output, respectively.

As discussed below, this continuation value assumes that a balanced growth path is eventually

reached.

We consider a constant elasticity formulation of preferences which nests the Benchmark case

of logarithmic preferences when σ = 1. The planner’s problem is thus:

max
X

T−1∑
t=0

βt
(
Ct(X)1−σ − 1

1− σ

)
+ βTVT (X) (18)

where the vector of choice variables X is given by:

X = [{θt}T−1t=0 , {Rt+1}T−1t=0 , {π2t}Tt=0, {π3t}Tt=0] (19)

Here, θt denotes the gross savings rate in period t, and πit is the share of labor devoted to sector i

at time t. For each guess of X̂, the implied sequence of consumption {Ct(X̂)}Tt=0 can be computed
as described below, along with continuation value VT (X̂).
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2.2.1 Bounds and Constraints

We impose the following lower and upper bounds on the choice variables in (19):

0 ≤ θt ≤ 1

0 ≤ Rt+1 ≤ R0

0 ≤ π2t ≤ 1

0 ≤ π3t ≤ 1

For all t = {0, ...T}, we further impose a non-negativity constraint on consumption. For numer-
ical optimization purposes, this constraint is actually implemented as requiring slightly positive

consumption:

Ct > 0.00001

2.2.2 Objective Function: Computation of {Ct(X̂)}Tt=0

This section describes how {Ct(X̂)}Tt=0 is computed (within the objective function) for a given
guess of the direct optimization choice variables (19).

Energy Inputs: For periods t = {0, ..., T − 1}, total energy inputs Et can be inferred by
substituting oil stocks and labor shares into the energy production functions (12), (13), and (15):

Et = {κ1 (Rt −Rt+1)
ρ + κ2 (A2tπ2tN)ρ + κ3 (A3tπ3tN)ρ}1/ρ (20)

To compute oil consumption during and after period T , we treat oil extraction rates in period

T − 1 as steady-state values that are continued thereafter. That is, define the period T − 1 oil

extraction rate ΘT−1 as the fraction of oil in the ground at the beginning of period T − 1 that is

extracted during period T − 1 :

ΘT−1 ≡
E1,T−1
RT−1

=
RT−2 −RT−1

RT−1

Period T oil consumption and the oil stock at time T + 1 are then given by:

RT+1 = RT · (1−ΘT−1)

E1,T = ΘT−1 ·RT (21)

Note that this approach differs from the GHKT’s Benchmark Numerical Model approximation

that all oil is used up over the course of T < ∞ period (17). We should thus expect to see
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marginally different oil extraction paths when comparing this model’s results with those of the

GHKT Benchmark Numerical Model.

Given (21), along with π2T and π3T from X̂, we can back out period T energy inputs, ET :

ET =
{
κ1E

ρ
1,T + κ2 (A2Tπ2TN)ρ + κ3 (A3Tπ3TN)ρ

}1/ρ
(22)

Carbon Emissions and Concentrations: The amounts of carbon-based fossil fuel inputs
implied by X̂ can be easily computed by substituting into the energy production functions (12)

and (13), as applied in (20). In contrast to the standard GHKT model, however, we introduce

a form of technological progress that reduces the emissions intensity of coal usage over time.

Specifically, let ϑt denote the fraction of coal’s carbon-equivalent energy content that ends up

emitted from combustion at time t. Carbon emissions Em
t for periods t = {0, ..., T} can then be

computed from X̂ via:

Ef
t = (Rt −Rt+1) + ϑt(A2tπ2tN) (23)

The introduction of ϑt is motivated by the need to assume a balanced growth path at some point

in time. If ϑt goes to zero as t approaches infinity, then carbon emissions will go to zero as well,

since oil usage is continually declining. In this setting, assuming stabilized carbon concentrations

after time T should be an acceptable approximation to the true model for suffi ciently large T.

Intuitively, declining emissions intensity ϑt can also be motivated as reflecting increasingly

cost-competitive abatement possibilities. The seminal DICE climate-economymodel (e.g.,. Nord-

haus, 2010) assumes that the economy becomes slightly less carbon-intensive over time even

without climate policy interventions, and that carbon emissions abatement costs likewise de-

crease over time due to technological progress. While the representation of energy inputs and

carbon emissions is quite different in the DICE and GHKT models, we nonetheless argue that a

gradually declining coal emissions intensity ϑt is broadly in line with similar concepts from the

literature. As a first pass, we assume a logistic functional form for ϑt, with parameters a and b :

ϑt =
1

1 + exp(−(a+ b(t))
(24)

Figure 2.1 displays the ϑt, function over time for the parameters we maintain throughout this

note.
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Figure 2.1

For our calibration, the emissions intensity of coal only begins to substantially decrease after

the year 2100.

Output and Consumption: Finally, given {Et}Tt=0, {St}Tt=0, and X̂, we can compute
output, consumption, and capital for periods t = {0, ..., T − 1} from production function (14)

and the aggregate resource constraint (2):

Yt = e−γ(St−S)AtK
α
t {(1− π2,t − π3,t)N}

1−α−v Ev
t (25)

Ct = (1− θt)Yt (26)

Kt+1 = θtYt + (1− δ)Kt (27)

For periods T and thereafter, we treat the savings rate in period T − 1 as steady-state value

that is subsequently maintained. For consumption in period t = T, we thus have that:

CT = (1− θT−1)YT
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2.2.3 Objective Function: Computation of VT (X̂)

After period T, based on the values of KT , ST , RT , and the ’steady-state’ choice variables

ΘT−1, θT−1, π2T,, and π3T , the continuation value VT (X̂) is computed as follows.

First, we simulate the continuation of the economy for n periods after T. Specifically, for

periods T + j, j ∈ {1, 2, ...n}, we have that oil continues to be extracted at rate ΘT−1 as in (21):

E1,T+j = ΘT−1 · [RT+j]

= ΘT−1 ·
[
RT (1−ΘT−1)

j
]

Coal and clean energy inputs grow at the long-term rate of labor productivity growth, gZ :

E2,T+j = (A2,T+j)π2,TN

= (1 + gZ)jE2,T

E3,T+j = (A3,T+j)π3,TN

= (1 + gZ)jE3,T

Energy inputs continue to follow (20):

ET+j = {κ1 (E1,T+j)
ρ + κ2 (E2,T+j)

ρ + κ3 (E3,T+j)
ρ}1/ρ (28)

For large enough T, coal emissions intensity ϑT+j will be close to zero, and oil usage E1,T+j
should be low. We thus impose that carbon concentrations have reached their new steady-state

value by period T :

ST+j = ST

Given (28), KT , and X̂, we can compute YT+j, KT+j, and CT+j analogously to (25)-(27):

YT+j = AT+j(e
−γT (ST−S))(KT+j

α) {(1− π2T − π3T )N}1−α−v Ev
T+j)

KT+j = (θT−1)YT+j−1 + (1− δ)KT+j−1
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and:

CT+j = (1− θT−1)YT+j

After period T + n, we assume that the economy has reached a balanced growth path, and that

consumption grows at constant rate (1 + gBGp) :

CT+n+j = (1 + gBGP )j(CT+n+j)

Finally, the continuation value of the objective function is thus given by:

VT (X̂) =
T+n∑
j=0

βT+j

(
CT+j(X̂)1−σ − 1

1− σ

)
+βT+n

(
CT+n(X̂)1−σ − 1

1− σ

)[
1

1− β(1 + gBGP )1−σ

]
(29)

3 Calibration and Results

3.1 Calibration

Table 1 provides GHKT’s Benchmark quantitative analysis parameters as well as the alternative

values considered in this sensitivity analysis.

Here, the "DICE" value for gTFPt represents the time-varying TFP growth rates to which the

2010 DICE Model (Nordhaus, 2010) is calibrated. This growth rate, gANHt , is given by:

gANHt = gANH0 exp(−γ0 · t · exp(−γ1 · t))

where t is time in the number of years (i.e., t for the first period it t = 10), and where:

gANH0 = 0.160023196685654

γ0 = 0.00942588385340332

γ1 = 0.00192375245926376

Here, γ0 ∼ rate of decline in productivity growth rate (percent per year), γ1 ∼ rate of decline of
decline in productivity growth rate (percent per year), and gANH0 ∼ initial rate of productivity
growth per decade. After period T, we impose that gANHT+j = gANHT = 3.27% ∀j. That is, long-run
TFP growth is assumed to remain at ∼ 0.32% per year. Figure 3.1 depictes the annual TFP

growth rate implied by gANHt :
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Parameter Benchmark Alt1 Alt2 Alt3
σ 1 1.5 2 0.5
gTFPt (% per year) 0.0% 1.3% 1.5% DICE
δ (% per decade) 100% 65%
β (annual) .985 .990 .995 .999

gA2t, gA3t (% per year) 2.0%
ρ −0.058
κ1 0.5429
κ2 0.1015
κ3 0.3556
A2,0 7693
A3,0 1311
R0 (GtC) 253.8
N 1
φ 0.0228
φL 0.2
φ0 0.393
S (GtC) 581
S1,−1 (GtC) 103
S2,−1 (GtC) 699
γ 0.000023793
α 0.3
v 0.04
N (normalized) 1

Table 1: Calibration Parameters
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Figure 3.1

Several further parameters do not have a counterpart in the GHKT Benchmark case, and/or

are unimportant for the computation of optimal carbon taxes and energy paths. These include:

Parameter Benchmark Alternative

a 8

b −0.05

A0 17, 887 16, 640

K0 (US$ bil.) 128, 920 164, 030

A notable challenge in the calibration of initial final good sector productivityA0 and the initial

capital stock K0 is the decision whether or not to re-calibrate these values when we change the

assumed capital depreciation rate, δ. Our general approach to calibrating K0 and A0 is to match

a representative net rate of return on capital of 5% per year (as in, e.g., the 2010 DICE Model,

Nordhaus, 2010), corresponding to a net decadal return of r̃ = 62.89%. That is, given world

GDP in the calibration period t = −1 (calendar year 2009), we solve for K0 via:

K0 =
α(Y2009 · 10)

r
=
α(Y2009 · 10)

r̃ + δ
(30)

where r = (r̃+ δ) equals the gross return on capital, and Y2009 is annual GDP in the calibration

year 2009. For a given net rate of return on capital, the main issue is thus that the decadal gross

return r differs depending on whether we assume a decadal depreciation rate of δ = 1, or δ = .65

(corresponding to an annual depreciation rate of 10%). This question of re-calibration matters
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both because it determines how far the economy is from its balanced growth path capital-output

ratio, and because GDP levels will grow more rapidly with higher initial TFP, which grows

at an assumed, exogenous rate.1 On the other hand, re-calibration requires changing multiple

parameters at once, thus rendering the interpretation of differences in results across experiments

more diffi cult. We deal with this issue by reporting results for both re-calibrated and non-

recalibrated values when changing the depreciation rate.

3.2 Computation

The computation is performed in Matlab using the ’Active Set’algorithm in fmincon. The direct

optimization time horizon is set to T = 30 periods = 300 years. The subsequent simulation

horizon for the computation of the continuation value VT is set to n = 100 periods = 1000 years.

To maintain numerical precision, aggregate consumption is recorded in quadrillions of dollars for

the evaluation in the objective function, an the convergence tolerance is set to 1 · e−12.

3.3 Main Results

First, Figure 3.2 plots Λ̂t over time for the main cases considered with β = .985 in order to

provide a broad sense for the order of magnitude of variations in Λ̂t observed:

1 For a given K0, we infer initial TFP based on:

A0 =
(Y2009 · 10)

e−γ(S0−S)Kα
0 {(1− π2,0 − π3,0)N}

1−α−v
Ev0

where π2,0 and π3,0 are normalized to zero to match the GHKT Benchmark calibration underlying the energy
production technologies.
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Figure 3.2

The GHKT benchmark case (σ = 1, δ = 100%) has a constant optimal carbon tax-GDP ratio

of 8.07 ×10−5. The results in Figure 3.2 suggest that consideration of higher curvature in the

utility function, coupled with positive TFP growth, can decrease the optimal carbon tax-GDP

ratio by up to 50 percent in the case of (σ = 2, gTFP = 1.5%). As discussed below in Section

4, with a slight tweak, GHKT’s benchmark optimal carbon tax formulation (11) can predict

these differences in Λ̂t well. Section 4 further demonstrates that adjusting β to approximately

maintain the effective discount factor from the benchmark case when changing σ and gTFP

produces Λ̂t close to the benchmark as well. The main results in Figure 3.2 further suggest that

the optimal carbon tax-GDP ratio is essentially constant in most cases considered. The main

exception occurs when σ > 1 and with the time-varying TFP growth rates from the DICE model

(Nordhaus, 2010). As discussed below, this is because agents’effective discount rate keeps on

changing along with gTFP in this case.
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Next, in order to zoom in on the impacts of depreciation rates and productivity growth,

Figures 3.3, 3.4, and 3.5 show Λ̂t over time for fixed combinations of the intertemporal preference

parameters σ and β.
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Figure 3.3

With logarithmic preferences (σ = 1), we see that differences in TFP growth rates do not

affect the optimal carbon tax relative to GDP, as expected. Consideration of less-than-full

depreciation introduces transitional dynamics which lead to a temporary deviation from the

benchmark Λ̂t. However, the impact of depreciation is quantitatively modest, and transitional

dynamics are predicted to be fast.

Next, with more than logarithmic curvature in the representative agent’s utility function,

we find that higher TFP growth decreases the optimal carbon-GDP ratio. Time-varying TFP

growth rates (gTFP = DICE) moreover lead to changes in Λ̂t over time. However, similar to the

benchmark case, consideration of less-than-full depreciation has only a brief and quantitatively

small impact on Λ̂t.
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Figure 3.4

2000 2050 2100 2150 2200
3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5
x 10­5

Year

C
ar

bo
n 

Ta
x/

G
D

P

Carbon Tax/GDP Ratio, σ=2

σ=2.0, gTFP=0.0%,δ=100%, β=.985
σ=2.0, gTFP=1.3%,δ=100%, β=.985
σ=2.0, gTFP=1.5%,δ=100%, β=.985
σ=2.0, gTFP=DICE,δ=100%, β=.985
σ=2.0, gTFP=0.0%,δ=65%, β=.985
σ=2.0, gTFP=1.5%,δ=65%, β=.985
σ=2.0, gTFP=DICE,δ=65%, β=.985
σ=2.0, gTFP=0.0%,δ=65%, β=.985, recalib.
σ=2.0, gTFP=1.5%,δ=65%, β=.985, recalib.

Figure 3.5
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The previous results all focus on a pure rate of social time preference of 1.5% per year. Figure

3.6 displays the optimal carbon tax-GDP ratios in 2010 across different values of β :
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Figure 3.6

The results suggest that the optimal carbon tax-GDP ratio is most sensitive to the discount

factor with logarithmic preferences. As seen above, changes in the TFP growth rate do not affect

Λ̂t in this case. In contrast, with higher curvature in the utility function, TFP growth greatly

diminishes the sensitivity of the optimal carbon tax-GDP ratio to changes in β.

Finally, Figure 3.7 shows changes in the optimal year 2010 carbon tax-GDP ratio as a function

of σ, the inverse intertemporal elasticity of substitution.
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Figure 3.7

Without TFP growth, Λ̂t appears quite robust to changes in σ. However, with TFP growth, the

optimal carbon tax-GDP ratio is decreasing in σ, as seen above.

3.4 Optimal Carbon Tax Levels

The analysis has thus far focused on the optimal carbon tax-GDP ratio. However, as GDP during

the initial decade responds endogenously to changes in preferences and technological progress,

it is also potentially interesting to consider changes in optimal carbon tax levels due to the

parameter variations considered.

Figure 3.8 depicts optimal carbon tax levels in USD ($2000) per metric ton carbon over the

course of the next 100 years (for a pure rate of social time preference β = .985):
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Figure 3.8

The results suggest that the optimal carbon tax level in the year 2100 is sensitive to assumptions

made about the structure of preferences and TFP growth. However, the optimal carbon tax as

of 2010 ranges only from $28 to $55/mtC (given β = .985). Figures 3.9 and 3.10 focus separately

on the evolution of optimal carbon tax levels across TFP growth rates for σ = 1 and σ = 2. The

results suggest that uncertainty about future TFP growth has larger implications for optimal

carbon tax levels later on in the century if utility is logarithmic. Conversely, if σ = 2, we see

that uncertainty about future TFP growth plays a relatively larger role in determining optimal

carbon tax levels in the near future:
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Figure 3.10

Finally, to evaluate the importance of recalibration of the initial capital stock when changing

the depreciation rate, Figure 3.11 compares optimal carbon taxes with and without recalibration:
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Figure 3.11

The results suggest that recalibration affects optimal carbon tax levels only slightly. In contrast,

considerably larger differences arise due to changes in assumed output growth rates and utility

function curvature.

4 Analytic Approximation

GHKT provide an analytic, closed-form solution for the optimal carbon tax-GDP ratio in the

Benchmark case (11). In the alternative cases considered, Λ̂t deviates from its benchmark value

for two reasons: transitional dynamics in the savings rate, and changes to effective discount-

ing. For the functional forms considered, GHKT’s general optimal carbon tax formulation (8)

becomes:
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Λ̂t ≡
Λt

Yt
=
∞∑
j=0

βj
(
Ct+j
Ct

)−σ (
Yt+j
Yt

)
(−γ) (1− dj)

=

∞∑
j=0

βj
(Cσ

t /Yt)(
Cσ
t+j/Yt+j

)(−γ) (1− dj) (31)

Once the economy has reached the point where savings rates are stabilized, one can rewrite (31)

using the fact that:
Ct+j
Yt+j

= θ ∀j

and hence:

Cσ
t+j

Yt+j
=

(
Yt+jθ

)σ
Yt+j

= θ
σ
Y σ−1
t+j

yielding:

Λ̂t =
∞∑
j=0

βj
(Cσ

t /Yt)(
Cσ
t+j/Yt+j

)(−γ) (1− dj)

=
∞∑
j=0

βj
(

Yt
Yt+j

)σ−1
(−γ) (1− dj) (32)

If the economy exhibits a constant growth rate, gy, equation (32) becomes:

Λ̂t =
∞∑
j=0

[β (1 + gy)
1−σ]j · (−γ) (1− dj)

= γ

(
φL

1− β(1 + gy)(1−σ)
+

(1− φL)φ0
1− (1− φ)β(1 + gy)(1−σ)

)
(33)

Expression (33) represents a slightly modified version of the GHKT benchmark formulation (11).

In the benchmark case, with σ = 1, equation (33) reduces to the standard (11). When σ > 1,

formulation (33) approximates the optimal carbon tax-GDP ratio, and represents it exactly if

savings rates and GDP growth rates are constant.

Figure 4.1 compares actual estimates of Λ̂t against the corresponding approximations based

on (33). All cases in Figure 4.1 assume an annual discount factor of β = .985 and full depreciation

over the course of a decade (δ = 100%). Note that the long-run growth rate of labor productivity

was used to estimate output growth gy, as would be appropriate for an economy on a balanced

23



growth path.2 Given that oil inputs are decreasing over time, however, this procedure over-

estimates the true long-run growth rate of the economy, which is actually gradually decreasing

over time. Appendix B provides a comparison of output growth rates and corresponding labor

productivity growth rates across model scenarios. Overall, however, expression (33) arguably

approximates Λ̂t well.
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Figure 4.1

The two main shortcomings of the approximation are (i) that it does not capture transitional

dynamics, and (ii) that it tends to slightly under-estimate Λ̂t because it over-estimates gy. For

example, for the case of σ = 1.5, gTFP = 1.3% per year, δ = 100%, and β = .985, the decadal

growth factor of final good sector labor productivity is 1.2190, but the realized average output

growth factor between the years 2060-2410 is only 1.1991 (see Appendix B). Figure 4.2 zooms in

on this case to highlight its implications for the carbon tax-GDP ratio approximation:

2 Given the Cobb-Douglas formulation for final goods production, one can find a labor productivity growth
rate gz that is equivalent to a given TFP growth rate gTFP via: gz = (1 + gTFP )

1
1−α−v − 1.
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Figure 4.2

The results in Figure 4.2 suggest that both concerns surrounding the approximation (33) are of

modest magnitude.

4.1 Sensitivity with Adjusted Discount Factors

The sensitivity analysis above changes the intertemporal elasticity parameter σ and the long-term

growth rate of consumption whilst maintaining a constant discount factor β. Effective discount

rates thus differ across the scenarios considered. This section presents an alternative sensitivity

analysis that adjusts β when changing σ and gz so as to maintain consistency with the benchmark

case. More specifically, this section focuses on parameter combinations of σ, gz, and β for which

the approximated carbon tax-GDP ratio as defined in (33) remains at the benchmark value of

Λ̂t = .0000807. That is, for a given combination of σ and gz, we consider what the pure rate

of social time preference would have to be such that the effective discount factor remains at the

benchmark value of β = (.985)10 :

β̂(1 + gz)
1−σ = (.985)10 = βBenchmark (34)

β̂ =
(.985)10

(1 + gz)1−σ

Figure 4.3 displays values of β̂ that will maintain the benchmark optimal carbon tax approxi-
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mation for a given combination of (σ, gz) as per (34) in annual levels:
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Figure 4.3

Next, Figure 4.4 displays actual and approximated optimal carbon tax-GDP ratios for a range

of parameter values with β adjusted as in Figure 4.3:3

3 Scenarios that would require β > 1 were not considered.
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Figure 4.4

With the discount factor set as in (34), the approximated optimal carbon tax-GDP ratio is by

construction identical to the benchmark value. As expected, the actual optimal carbon tax-GDP

ratio thus lies close to the benchmark value in all cases considered. The actual values of Λ̂t deviate

slightly from the approximation only for two reasons: (1) transition dynamics, and (2) the fact

that the actual long-term output growth rate gy falls short of the long-term labor productivity

growth rate gz due to declining oil inputs. For example, in the scenario σ = 2, gTFP = 1%,

δ = 100%, and β = 1, the average output growth factor between the years 2060-2410 is 1.1517,

but the decadal labor productivity growth factor is 1.1627 (see Appendix B).

Finally, to put the results from Figure 4.4 in further perspective, Figure 4.5 compares actual

and approximated carbon tax-GDP ratios in the case where σ = 1.5, both with and without

adjustments to β to keep effective discount rates close to the benchmark:
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As expected, the optimal carbon tax-GDP ratio remains close to the benchmark value and

its approximation when the discount factor is adjusted along with σ and gz. In contrast, bigger

deviations from the benchmark occur when σ and gz are changed and β is held constant. However,

even in those cases, the modified optimal carbon tax formulation (33) arguably captures the

optimal carbon tax-GDP ratio well.

5 Appendix A: Matching GHKT’s Benchmark Quantita-

tive Results

This appendix compares quantitative results for energy inputs in the benchmark case (σ =

1, δ = 1, gTFP = 0) obtained by GHKT to those obtained by the alternative numerical model

used throughout this note. The alternative Matlab model replicates GHKT’s results for the

benchmark case, as desired:
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6 Appendix B: Output Growth Factors

This appendix details three measures of output growth factors for the central model scenarios:

Averaged across all periods between years zero and 400 (Gy
t=400

t=0 ) (calendar years 2010-2410),

between years 50 and 400 (Gy
t=400

t=50 ), and in the decade between 2110 and 2120 (Gy,100). Excluding

the early periods helps provide a cleaner comparison between actual output growth and labor

productivity growth rates in the final goods production sector, eliminating differences in growth

rates due to transitional dynamics early on. Labor productivity in the energy production sector

is assumed to grow at 2% per year in all scenarios.

Gdec
z = 1.000 β

Gy
t=400

t=0 .985 .990 .995 .999

δ = 1 δ = .65, no Rec. δ = .65, Rec.

0.5 1.0023

σ 1 1.0022 1.0064 1.0035 1.0047 1.0070 1.0089

1.5 1.0022 1.0062 1.0035 1.0046 1.0069 1.0088

2 1.0022 1.0062 1.0034 1.0046 1.0068 1.0086

Table B1: Average growth factors between years 0-400 for 0% TFP growth
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Gdec
z = 1.000 β

Gy
t=400

t=50 .985 .990 .995 .999

δ = 1 δ = .65, no R. δ = .65, R

0.5 0.9986

σ 1 0.9986 0.9989 0.9988 1.0007 1.0027 1.0048

1.5 0.9987 0.9991 0.9989 1.0007 1.0027 1.0047

2 0.9988 0.9993 0.9991 1.0008 1.0027 1.0046

Table B2: Average growth factors between years 50-400 for 0% TFP growth

Gdec
z = 1.000 β

Gy,100 .985 .990 .995 .999

δ = 1 δ = .65, no R. δ = .65, R

0.5 0.9986

σ 1 0.9987 0.9988 0.9988 1.0005 1.0021 1.0033

1.5 0.9988 0.9990 0.9989 1.0005 1.0021 1.0032

2 0.9988 0.9993 0.9992 1.0005 1.0021 1.0032

Table B3: Growth factor between 2110-2120 for 0% TFP growth

Gdec
z = 1.2190 β

Gy
t=400

t=0 .985 .990 .995 .999 .9753 .9948

0.5 1.2108 1.2051

σ 1 1.2054 1.2084 1.2112 1.2134

1.5 1.1999 1.2030 1.2059 1.2082 1.2058

2 1.1945 1.1975 1.2005 1.2029

Table B4: Average growth factors between years 0-400 for 2% labor productivity growth

Gdec
z = 1.2190 β

Gy
t=400

t=50 .985 .990 .995 .999 .9753 .9948

0.5 1.2082 1.2033

σ 1 1.2036 1.2061 1.2085 1.2110

1.5 1.1991 1.2016 1.2041 1.2060 1.2040

2 1.1945 1.1971 1.1996 1.2016

Table B5: Average growth factors between years 50-400 for 2% labor productivity growth
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Gdec
z = 1.2190 β

Gy,100 .985 .990 .995 .999 .9753 .9948

0.5 1.2076 1.2035

σ 1 1.2038 1.2058 1.2078 1.2092

1.5 1.2000 1.2021 1.2041 1.2057 1.2039

2 1.1962 1.1983 1.2004 1.2021

Table B6: Growth factor between 2110-2120 for 2% labor productivity growth

Gdec
z= 1.2531 β

Gy
t=400

t=0 .985 .974 .9962

δ = 1 δ = .65, no R. δ = .65, R

0.5 1.2364

σ 1 1.2368 1.2406 1.2373

1.5 1.2304 1.2337 1.2305 1.2372

2 1.2240 1.2269 1.2238

Table B7: Average growth factors between years 0-400 for 1.5% TFP growth

Gdec
z= 1.2531 β

Gy
t=400

t=50 .985 .974 .9962

δ = 1 δ = .65, no R. δ = .65, R

0.5 1.2349

σ 1 1.2353 1.2354 1.2354

1.5 1.2299 1.2301 1.2300 1.2357

2 1.2245 1.2247 1.2245

Table B8: Average growth factors between years 50-400 for 1.5% TFP growth

Gdec
z= 1.2531 β

Gy,100 .985 .974 .9962

δ = 1 δ = .65, no R. δ = .65, R

0.5 1.2351

σ 1 1.2354 1.2355 1.2355

1.5 1.2310 1.2311 1.2310 1.2357

2 1.2266 1.2267 1.2266

Table B9: Growth factor between 2110-2120 for 1.5% TFP growth
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Gdec
z = 1.1627 Gy

t=400

t=0 Gy
t=400

t=50 Gy,100

(σ = 0.5, β = .9776) 1.1532 1.1509 1.1510

(σ = 1.5, β = .9925) 1.1537 1.1514 1.1515

(σ = 2.0, β = 1.000) 1.1540 1.1517 1.1517

Table B10: Growth factors for 1% TFP growth

Gdecade
z = 1.3499 Gy

t=400

t=0 Gy
t=400

t=50 Gy,100

(σ = 0.5, β = .9703) 1.3251 1.3246 1.3248

(σ = 1.5, β = .9999) 1.3263 1.3257 1.3257

Table B11: Growth factors for 2% TFP growth
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